RESUMO
Ferroptosis contributes to the pathogenesis of atrial fibrillation (AF), although the mechanisms are still largely uncovered. The current study was designed to explore the pharmacological effects of icariin against ethanol-induced atrial remodeling, if any, and the mechanisms involved with a focus on SIRT1 signaling. Excessive ethanol-treated animals were administered with Ferrostatin-1, Erastin or icariin to evaluate the potential effects of icariin or ferroptosis. Then, the underling mechanisms was further explored in the in vitro experiments using HL-1 atrial myocytes. Excessive ethanol administration caused significant atrial damage as evidenced by increased susceptibility to AF, altered atrial conduction pattern, atrial enlargement, and enhanced fibrotic markers. These detrimental effects were reversed by Ferrostatin-1 or icariin treatment, while Erastin co-administration markedly abolished the beneficial actions conferred by icariin. Mechanistically, ethanol-treated atria exhibited markedly up-regulated pro-ferroptotic protein (PTGS2, ACSL4, P53) and suppressed anti-ferroptotic molecules (GPX4, FTH1). Icariin treatment inhibited ethanol-induced atrial ferroptosis by reducing atrial mitochondrial damage, ROS accumulation and iron overload. Interestingly, the in vivo and in vitro data showed that icariin activated atrial SIRT1-Nrf-2-HO-1 signaling pathway, while EX527 not only reversed these effects, but also abolished the therapeutic effects of icariin. Moreover, the stimulatory effects on GPX4, SLC7A11 and the suppressive effects on ACSL4, P53 conferred by icariin were blunted by EX527 treatment. These data demonstrate that ferroptosis plays a causative role in the pathogenesis of ethanol-induced atrial remodeling and susceptibility to AF. Icariin protects against atrial damage by inhibiting ferroptosis via SIRT1 signaling. Its role as a prophylactic/therapeutic drug deserves further clinical study.
Assuntos
Fibrilação Atrial , Remodelamento Atrial , Ferroptose , Animais , Fibrilação Atrial/induzido quimicamente , Fibrilação Atrial/tratamento farmacológico , Apoptose , Sirtuína 1/genética , Proteína Supressora de Tumor p53 , Etanol/toxicidadeRESUMO
Targeting mitochondrial quality control with melatonin has been found promising for attenuating diabetic cardiomyopathy (DCM), although the underlying mechanisms remain largely undefined. Activation of SIRT6 and melatonin membrane receptors exerts cardioprotective effects while little is known about their roles during DCM. Using high-fat diet-streptozotocin-induced diabetic rat model, we found that prolonged diabetes significantly decreased nocturnal circulatory melatonin and heart melatonin levels, reduced the expressions of cardiac melatonin membrane receptors, and decreased myocardial SIRT6 and AMPK-PGC-1α-AKT signaling. 16 weeks of melatonin treatment inhibited the progression of DCM and the following myocardial ischemia-reperfusion (MI/R) injury by reducing mitochondrial fission, enhancing mitochondrial biogenesis and mitophagy via re-activating SIRT6 and AMPK-PGC-1α-AKT signaling. After the induction of diabetes, adeno-associated virus carrying SIRT6-specific small hairpin RNA or luzindole was delivered to the animals. We showed that SIRT6 knockdown or antagonizing melatonin receptors abolished the protective effects of melatonin against mitochondrial dysfunction as evidenced by aggravated mitochondrial fission and reduced mitochondrial biogenesis and mitophagy. Additionally, SIRT6 shRNA or luzindole inhibited melatonin-induced AMPK-PGC-1α-AKT activation as well as its cardioprotective actions. Collectively, we demonstrated that long-term melatonin treatment attenuated the progression of DCM and reduced myocardial vulnerability to MI/R injury through preserving mitochondrial quality control. Melatonin membrane receptor-mediated SIRT6-AMPK-PGC-1α-AKT axis played a key role in this process. Targeting SIRT6 with melatonin treatment may be a promising strategy for attenuating DCM and reducing myocardial vulnerability to ischemia-reperfusion injury in diabetic patients.
Assuntos
Cardiomiopatias Diabéticas/prevenção & controle , Melatonina/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Biogênese de Organelas , Sirtuínas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Proteína Forkhead Box O3/metabolismo , Masculino , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/ultraestrutura , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/ultraestrutura , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuínas/genética , Fatores de TempoRESUMO
Mitochondrial reactive oxygen species (ROS) damage and atrial remodeling serve as the crucial substrates for the genesis of atrial fibrillation (AF). Branched-chain amino acids (BCAAs) catabolic defect plays critical roles in multiple cardiovascular diseases. However, the alteration of atrial BCAA catabolism and its role in AF remain largely unknown. This study aimed to explore the role of BCAA catabolism in the pathogenesis of AF and to further evaluate the therapeutic effect of melatonin with a focus on protein kinase G (PKG)-cAMP response element binding protein (CREB)-Krüppel-like factor 15 (KLF15) signaling. We found that angiotensin II-treated atria exhibited significantly elevated BCAA level, reduced BCAA catabolic enzyme activity, increased AF vulnerability, aggravated atrial electrical and structural remodeling, and enhanced mitochondrial ROS damage. These deleterious effects were attenuated by melatonin co-administration while exacerbated by BCAA oral supplementation. Melatonin treatment ameliorated BCAA-induced atrial damage and reversed BCAA-induced down-regulation of atrial PKGIα expression, CREB phosphorylation as well as KLF15 expression. However, inhibition of PKG partly abolished melatonin-induced beneficial actions. In summary, these data demonstrated that atrial BCAA catabolic defect contributed to the pathogenesis of AF by aggravating tissue fibrosis and mitochondrial ROS damage. Melatonin treatment ameliorated Ang II-induced atrial structural as well as electrical remodeling by activating PKG-CREB-KLF15. The present study reveals additional mechanisms contributing to AF genesis and highlights the opportunity of a novel therapy for AF by targeting BCAA catabolism. Melatonin may serve as a potential therapeutic agent for AF intervention.
Assuntos
Fibrilação Atrial , Melatonina , Aminoácidos de Cadeia Ramificada , Angiotensina II , Fibrilação Atrial/induzido quimicamente , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/genética , Humanos , Fatores de Transcrição Kruppel-Like , Melatonina/farmacologiaRESUMO
Polydatin has attracted much attention as a potential cardioprotective agent against ischemic heart disease and diabetic cardiomyopathy. However, the effect and mechanism of polydatin supplementation on alcoholic cardiomyopathy (ACM) are still unknown. This study aimed to determine the therapeutic effect of polydatin against ACM and to explore the molecular mechanisms with a focus on SIRT6-AMP-activated protein kinase (AMPK) signaling and mitochondrial function. The ACM model was established by feeding C57/BL6 mice with an ethanol Lieber-DeCarli diet for 12 weeks. The mice received polydatin (20 mg kg-1) or vehicle treatment. We showed that polydatin treatment not only improved cardiac function but also reduced myocardial fibrosis and dynamin-related protein 1 (Drp-1)-mediated mitochondrial fission, and enhanced PTEN-induced putative kinase 1 (PINK1)-Parkin-dependent mitophagy in alcohol-treated myocardium. Importantly, these beneficial effects were mimicked by SIRT6 overexpression but abolished by the infection of recombinant serotype 9 adeno-associated virus (AAV9) carrying SIRT6-specific small hairpin RNA. Mechanistically, alcohol consumption induced a gradual decrease in the myocardial SIRT6 level, while polydatin effectively activated SIRT6-AMPK signaling and modulated mitochondrial dynamics and mitophagy, thus reducing oxidative stress damage and preserving mitochondrial function. In summary, these data present new information regarding the therapeutic actions of polydatin, suggesting that the activation of SIRT6 signaling may represent a new approach for tackling ACM-related cardiac dysfunction.