RESUMO
Phospholipids (PL) have garnered significant attention due to their physiological activities. Milk and other dairy products are important dietary sources for humans and have been extensively used to analyze the presence of PL by various analytical techniques. In this paper, the analysis techniques of PL were reviewed with the eight trigrams of phospholipidomics and a comprehensive fingerprint of 1295 PLs covering 8 subclasses in milk and other dairy products, especially. Technology is the primary productive force. Based on phospholipidomics technology, we further review the relationship between the composition of PL and factors that may be involved in processing and experimental operation, and emphasized the significance of the biological role played by PL in dietary supplements and biomarkers (production, processing and clinical research), and providing the future research directions.
RESUMO
Bisphenol G (BPG), bisphenol M (BPM) and bisphenol TMC (BPTMC), are newly recognized analogues of bisphenol A (BPA), which have been detected in multiple environmental media. However, the understanding of their negative impacts on environmental health is limited. In this study, zebrafish embryos were exposed to BPA and the three analogues (0.1, 10, and 1000 µg/L) to identify their developmental toxic effects. According to our results, all of the three analogues induced significant developmental disorders on zebrafish embryos including inhibited yolk sac absorption, altered heart rate, and teratogenic effects. Oil Red O staining indicated lipid accumulation in the yolk sac region of zebrafish after bisphenol analogues exposure, which was consistent with the delayed yolk uptake. Untargeted lipidomic analysis indicated the abundance of triacylglycerols, ceramides and fatty acids was significantly altered by the three analogues. The combined analysis of lipidomics and transcriptomics results indicated BPG and BPM affected lipid metabolism by disrupting peroxisome proliferator-activated receptor pathway and interfering with lipid homeostasis and transport. This partly explained the morphological changes of embryos after bisphenol exposure. In conclusion, our study reveals that BPG, BPM and BPTMC possess acute and developmental toxicity toward zebrafish, and the developmental abnormalities are associated with the disturbances in lipid metabolism.
Assuntos
Compostos Benzidrílicos , Embrião não Mamífero , Metabolismo dos Lipídeos , Fenóis , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Teratogênicos/toxicidadeRESUMO
Goat milk is considered the optimal substitute for human milk and is characterized by variations in the lipid composition of its fat globules across lactation phases. Therefore, the objective of this study was to thoroughly analyze the differences between goat milk during different lactations and human milk, aiming to offer scientific guidance for the production of functional dairy products. Compared with transitional and mature milk, the findings indicated that the total membrane protein content in goat colostrum exhibited greater similarity to that found in human milk. Additionally, goat milk exhibited higher milk fat globule size, as well as a higher total lipid and protein content than human milk. A total of 1461 lipid molecules across 61 subclasses were identified in goat milk and human milk. The contents of glycerides and glycerophospholipids were higher in goat colostrum, whereas sphingolipids and fatty acids were more abundant in human milk. Meanwhile, the compositions of lipid subclasses were inconsistent. There were 584 differentially expressed lipids identified between human and goat milk, including 47 subclasses that were primarily involved in the metabolism of glycerophospholipids, sphingolipids, and triglycerides. In summary, for both the membrane protein and the lipid composition, there were differences between the milk of different goat lactations and human milk.
RESUMO
As the most prevalent mycotoxin in agricultural products, aflatoxin B1 not only causes significant economic losses but also poses a substantial threat to human and animal health. AFB1 has been shown to increase the risk of hepatocellular carcinoma (HCC) but the underlying mechanism is not thoroughly researched. Here, we explored the toxicity mechanism of AFB1 on human hepatocytes following low-dose exposure based on transcriptomics and lipidomics. Apoptosis-related pathways were significantly upregulated after AFB1 exposure in all three hES-Hep, HepaRG, and HepG2 hepatogenic cell lines. By conducting a comparative analysis with the TCGA-LIHC database, four biomarkers (MTCH1, PPM1D, TP53I3, and UBC) shared by AFB1 and HCC were identified (hazard ratio > 1), which can be used to monitor the degree of AFB1-induced hepatotoxicity. Simultaneously, AFB1 induced abnormal metabolism of glycerolipids, sphingolipids, and glycerophospholipids in HepG2 cells (FDR < 0.05, impact > 0.1). Furthermore, combined analysis revealed strong regulatory effects between PIK3R1 and sphingolipids (correlation coefficient > 0.9), suggesting potential mediation by the phosphatidylinositol 3 kinase (PI3K) /protein kinase B (AKT) signaling pathway within mitochondria. This study revealed the dysregulation of lipid metabolism induced by AFB1 and found novel target genes associated with AFB-induced HCC development, providing reliable evidence for elucidating the hepatotoxicity of AFB as well as assessing food safety risks.
RESUMO
Mycotoxin aflatoxin B1 (AFB1) has been proven to cause neurotoxicity, but its potential interference with the normal function of brain tissue is not fully defined. As the indispensable role of lipids in maintaining the normal function of brain tissue, the aim of this study is to clarify the effect of AFB1 short-term (7 days) exposure on brain tissue from the perspective of lipid metabolism. In this study, zebrafish were exposed to two concentrations (5, 20 µg/L). Through quantitative analysis of AFB1, the detection of AFB1 in zebrafish brain tissue was discovered for the first time, combined with the changes in zebrafish neurobehavior, the occurrence of brain injury was deduced. Subsequently, 1734 lipids in zebrafish brain tissue were mapped using ion mobility time-of-flight mass spectrometry (UPLC-QTOF-IMS-MS), which has great advantages in lipid detection. Comparative analysis of the abnormal lipid metabolism in zebrafish brain revealed 114 significantly changed lipids, mainly involving two pathways of sphingolipid metabolism and fatty acid degradation. This study discovered the detection of AFB1 in the brain and revealed a potential link between AFB1-induced behavioral abnormalities and lipid metabolism disorders in brain tissue, providing reliable evidence for elucidating the neurotoxicity of AFB1.
Assuntos
Micotoxinas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Aflatoxina B1/toxicidade , Lipidômica , Micotoxinas/metabolismo , LipídeosRESUMO
Background: Despite the availability of multiple treatments, the prognosis of recurrent cervical cancer (RCC) remains poor. There are no reports of the entire treatment of cases with multiple recurrences, and clinicians have no guidelines in such cases. We share our experience and consider this complex case of multiple recurrences of cervical cancer. Case Description: We report our encounter with a challenging case of locally advanced cervical cancer with multiple recurrences after primary chemoradiotherapy. The first recurrence was a bulky lesion invading the posterior bladder wall and pelvic wall accompanied by severe haematuria and moderate anaemia. The patient was treated with various treatments during the course of the disease, including pelvic exenteration (PE), external beam radiotherapy (EBRT), radioactive seed implantation, and targeted therapy. These salvage treatments led to an overall survival (OS) of 47 months, a progression-free survival (PFS) after the last chemotherapy of 34 months, and a post-relapse survival of 13.5 months. However, the patient died from severe infection due to an intestinal fistula. Conclusions: This study reports on the experience of treatment after multiple relapses to provide a reference for clinicians. It suggests that PE should be considered for cervical cancer patients with central recurrence within the primary irradiated field when positive margins can be guaranteed, but it can be palliative even if the pelvic wall is invaded when no other treatments are available. Appropriate extension of resection or additional treatments such as intraoperative radiotherapy (IORT) and neoadjuvant chemotherapy can be considered for patients at high risk of re-recurrence.
RESUMO
The higher extraction efficiency of analytes is crucial for developing immunoassays with high accuracy. Here, we evaluated the extraction efficiency of neonicotinoids in tea samples in terms of grinding degrees, extraction solvents types and contents. Fragments for fresh tea leaves (1 g, 5-10 mm2) or tea powder (1 g, 35 mesh) for commercial tea was extracted with 100 % methanol. The extraction (1 mL) was diluted 10-fold with buffer solution, and then submitted to gold nanoparticles-based lateral flow immunoassay. This optimal extraction protocol exhibited a higher extraction efficiency (72.4-99.3 %) for the positive neonicotinoids samples. The cut-off values of lateral flow immunoassay were 0.325 or 0.65 µg/g, 0.3 or 0.45 µg/g, 0.3 or 0.45 µg/g, 0.03 or 0.06 µg/g for thiamethoxami, clothianidin, acetamiprid and midacloprid in fresh tea leaves and commercial tea. In summary, this proposed lateral flow immunoassay can be used as the point-of-needs analysis method for four neonicotinoids in tea.
Assuntos
Ouro , Nanopartículas Metálicas , Ouro/análise , Imunoensaio , Neonicotinoides/análise , Solventes , CháRESUMO
To reduce the polluted areas caused by the migration of radioactive or toxic matter, a clear understanding of soil matrix stability, especially the lattice, is essential under irradiation conditions like those of ß-ray irradiation. In reality, the matrix of soil or clay is silicate, with talc being one of the most simple species with a similar structure to that matter, exhibiting "2 : 1" stacking and a complete crystal. Therefore, in this work, it was irradiated by an electron beam in air with dose up to 1000 kGy. Then, variations in lattice and the intrinsic microstructural transformation process, especially in terms of defect formation and transformation, were explored. The main results show that irradiation led to talc lattice plane shrinkage and amorphization. Shrinkage and amorphization levels in the Z-axis were more serious than those in the Y-axis. For a 1000 kGy-irradiated sample, the shrinkage level of the (002) lattice plane was close to 2% near 0.2 Å and that of (020) was close to 1.3% near 0.06 Å. Variation in the (002) lattice plane was more obvious than that of (020). The main mechanisms involve the cleavage of tetrahedral Si-O and linkage of tetrahedra and octahedra. Tetrahedral Si-O cleavage was visible, leading to serious amorphization. Nevertheless, lattice plane shrinkage, especially in the Z-axis, was mainly caused by linkage cleavage in this direction. In addition to linkage cleavage, dehydroxylation and H2O volatilization occurred, coupled with H2O radiolysis. Nevertheless, those factors are secondary to lattice variation.