RESUMO
Producing a low-cost catalyst by a low-cost method is one of the hottest topics in the field of catalytic oxidization of volatile organic compounds (VOCs). In this work, a catalyst formula with a low-energy requirement was optimized in the powdered state, and verified in the monolithic state. An effective MnCu catalyst was synthesized at a temperature as low as 200 °C. Removals were all bigger than 88% for toluene, ethyl acetate, hexane, formaldehyde, and cyclohexanone at a low temperature of 240 °C. The MnCu catalyst was then loaded on a honeycomb cordierite, which was also effective for toluene removal at 240 °C. After characterizations, active phases were Mn3O4/CuMn2O4 in both the powdered and monolithic catalysts. The enhanced activity was attributed to balanced distributions of low-valence Mn and Cu, as well as abundant surface oxygen vacancies. The obtained catalyst is produced by low energy and effective at low temperature, which suggests a perspective application.
Assuntos
Óxidos , Compostos Orgânicos Voláteis , Oxirredução , Temperatura , Catálise , ToluenoRESUMO
With rapid urbanization and industrialization, environmental pollution caused by such activities has drawn much attention due to its adverse impacts on environmental quality and public health. Therefore, under the current background of China's ecological civilization construction, promoting the precise and scientific treatment of environmental pollution holds great significance. This paper proposes an improved perpetual inventory method to systematically measure the capital stock of urban and industrial pollution control. The efficiency of urban and industrial pollution control is measured by adopting the global data envelopment analysis (DEA) model. Then, the influencing factors of pollution control efficiency are empirically analyzed by using the spatial Tobit regression model. The results reveal that, first, the growth rate of the capital input scale of urban pollution control is greater than that of industrial pollution control, and the spatial distribution of capital input is unbalanced. Second, the efficiency of urban and industrial pollution control from 1991 to 2019 was generally low. The current efficiency values of urban and industrial pollution control are less than 0.2 and 0.5, respectively, indicating that urban and industrial pollution control are far from efficient. Third, the efficiency of urban and industrial pollution control is significantly positively related to the level of urbanization and industrialization, has a U-shaped relationship with the economic development level, and has heterogeneous effects on technology, energy intensity, government influence and foreign trade. On this basis, we provide constructive suggestions for optimizing the performance of pollution control.
Assuntos
Desenvolvimento Econômico , Poluição Ambiental , China , Eficiência , Indústrias , UrbanizaçãoRESUMO
Electroplating sludge had a high content of heavy metals and usually lacked high-value-added utilization. In this work, Cu-containing sludge was used to synthesize a spinel catalyst, which was applied in catalytic oxidization of toluene. As a result, the sludge-derived spinel removed 50% of toluene (1000 ppm, 9600 h-1) at 280 °C. In comparison, a reagent-synthesized spinel with a similar component removed 50% of pollutant at 294 °C. The sludge-derived spinel also showed a stable performance for over 50 h at 370 °C. Even when the initial concentration was increased to 5000 ppm, or the gas hourly space velocity was increased to 40,000 h-1, the temperature for 50% removal was only increased to 303 °C. According to characterizations, surface oxygens of the sludge-derived spinel were more active than those in the reagent-synthesized one. Besides, the former had more active surface oxygens (207.9 µmol/g) than the latter (183.1 µmol/g). Furthermore, the sludge-derived spinel was coated on a monolithic honeycomb, which were also effective in catalytic oxidization of toluene. The main results of this work were in favor of high-value-added utilization of hazardous solid waste and promoting its real industry application.
Assuntos
Esgotos , Compostos Orgânicos Voláteis , Catálise , Galvanoplastia , ReciclagemRESUMO
Chromium-containing electroplating sludge usually lacked proper disposal and recycling. High-temperature melting was a technology aiming to form glass-phase slag for the stabilizations of heavy metals. This work investigated the possibility of forming perovskite-like phase by chromium-containing sludge using high-temperature melting. The formed material was applied in catalytic oxidization of volatile organic compound. As a result, Ca2+-doped LaCrO3 was formed according to XRD and HRTEM. When Ca2+ doping reached 33%, i.e., La0.67Ca0.33CrO3, surface oxygen species of the obtained catalyst was increased to 65.7%, which was detected by XPS, resulting in a toluene removal of 50% at 302 °C. Besides, the activity was stable for over 50 h. In addition, the doping amount was as high as 40 mol% of Cr in the catalyst. Based on these results, a high-value-added catalyst was produced by the hazardous waste, which was in favor of hazardous-waste recycling as well as high-temperature-melting development.
Assuntos
Galvanoplastia , Compostos Orgânicos Voláteis , Compostos de Cálcio , Óxidos , Esgotos , TitânioRESUMO
By integrating imaging and drug-delivery in a single system, fluorescent nano-multifunctional imaging platforms can offer simultaneous diagnosis and therapy to diseases like cancer. However, the synthesis of such system involves a tedious, time-consuming, and multi-step process. Herein we report a facile method based on simple ultrasonication to synthesize highly cross-linked, monodispersed fluorescent polyphosphazene nanoparticles from hexachlorocyclotriphosphazene (HCCP) and dichlorofluorescein (FD). Various functional groups (folic acid, PEG-NH2, and methylene blue) can be "fastened" in situ onto the poly(cyclotriphosphazene-co-dichlorofluorescein) (PCTPDF) nanoparticles to expand its application as nano-multifunctional platform. All the nanoparticles were characterized spectrophotometrically, and morphology was established by the images obtained from scanning electron microscope (SEM). The synthesized multifunctional nanoparticles exhibited low toxicity and penetrated through the cytomembranes of human colon cancer (HCT 116) cells. When applied to in vivo tumor imaging using biologically engineered mouse model, methylene blue functionalized (PCTPDF@MB) nanoparticles exhibited excellent photodynamic activity and imaging ability. Thus, PCTPDF nanoplatform based on multi-functional fluorescent nanoparticles might offer an efficient solution to new age theranostics. Apart from diagnostics application, PCTPDF, as a nanoplatform, could also be utilized to achieve more comprehensive application in modern analytic chemistry. Graphical Abstract The table of contents.