Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Food Sci Technol ; 61(8): 1609-1619, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966797

RESUMO

The interest in algae-derived bioactive compounds has grown due to their potential therapeutic efficacy against a range of diseases. These compounds, derived from proteins, exhibit diverse functions and profound pharmacological effects. Recent research has highlighted the extensive health benefits of algae-derived bioactive compounds, positioning them as potential natural antioxidants in the food, pharmaceutical, and cosmetic industries. This study focuses on extracting proteins from Porphyra yezoensis using innovative physical pre-treatment methods such as stirring, ball milling, and homogenization, under various acidic and alkaline conditions. Enzymatic hydrolysis, employing commercial enzymes at optimal temperature, pH, and enzyme-substrate ratios, produced distinct fractions according to molecular weight. Pepsin demonstrated the highest hydrolysis rate, with the fraction above 10 kDa identified as the most bioactive hydrolysate. Antioxidant activity was evaluated through DPPH, ABTS, ferrous ion chelation, and reducing power assays, demonstrating high antioxidant potential and the ability to mitigate oxidative stress. The 10 kDa fraction of pepsin hydrolysate exhibited 82.6% DPPH activity, 77.5% ABTS activity, 88.4% ferrous ion chelation activity, and higher reducing power potential (0.84 absorbance at 700 nm). Further exploration of mechanisms, amino acid profiles, and potential in vivo benefits is essential to fully exploit the medicinal potential of these algae-derived hydrolysates.

2.
Ecotoxicol Environ Saf ; 243: 113985, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027712

RESUMO

The present study aimed to assess the in-vitro toxicity of a popular azodye, Eriochrome Black T (EBT) which may be an environmental hazard causing water pollution if released by textile industries as waste effluents to nearby water ponds. We explored the toxic potential of EBT at 200, 400 and 800 µg/ml concentrations, which were selected based on quantification of EBT present in the pond water near carpet industries. We investigated the permeability of EBT across the organ barriers and found it to be 6.48 ± 0.44% at the highest concentration. EBT also showed up to 26.46 ± 0.533% hemolytic potential on human RBCs. MTT assay revealed toxicity of up to 64.9 ± 10.12%. A dose-dependent increase in intracellular ROS levels and Caspase 3/7 activity was observed and confocal microscopy also demonstrated a similar trend of cellular apoptosis indicating ROS mediated induction of apoptosis as a mechanism of EBT induced cytotoxicity. After establishing the toxicity of EBT, an innovative nano-photocatalytic approach for dye remediation was applied by using as synthesized Mf-NGr-CNTs-SnO2 heterostructures. This catalyst showed dye degradation potential of up to 82% in 2 h in the presence of sun light. The degraded dye products were tested to have up to 30% reduced cellular toxicity as compared to the parent compound. This work successfully establishes the toxicity of EBT along with devising an innovative approach towards dye degradation where the catalyst is adhered on melamine foam and not being mixed in the effluents directly, thereby, reducing the possibility of catalyst being leached out into the river water.


Assuntos
Compostos Azo , Indústria Têxtil , Compostos Azo/química , Compostos Azo/toxicidade , Corantes/química , Humanos , Espécies Reativas de Oxigênio , Têxteis , Água
3.
Toxicol Mech Methods ; 31(3): 159-168, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33190584

RESUMO

Inspite of various health warnings from Government and health organizations, Calcium carbide (CaC2) is still the most commonly and widely used artificial fruit ripener, probably due to its easy availability, low cost and convenience of usage. Assessment of the hazardous effects of the CaC2 applications for fruit ripening has been a matter of interest since long. Several in vivo studies have reported the toxicological outcomes such as histopathological changes in lungs and kidneys, haematological and immunological responses, upon exposure with CaC2. However, a well-controlled study investigating the effects of CaC2 under in-vitro setup was lacking. Hence, this study has been conducted to explore the toxicity associated cellular events in L929 cells exposed with varying concentrations of CaC2 (0.00312-0.2 µg/µl) for 24 h exposure time. A 23.14% reduction in cell viability was observed at the highest dose of CaC2. A similar trend in cellular stress levels at 0.2 µg/µl dose was observed in terms of rounded cellular morphology and decreased adherence as compared to the control. Furthermore, Annexin V FITC/PI staining and subsequent confocal imaging revealed a similar trend of CaC2 induced apoptosis in a dose dependent manner. A gradual elevation of intracellular ROS has also been observed up to 0.025 µg/µl dose. Thus, the study concludes that short term CaC2 exposure may increase the cellular oxidative stress and disturb the redox balance of the cell which then undergoes apoptosis. The study concludes that the exposure of CaC2 can be associated with severe diseases and suggests to stop the uses of CaC2 as fruit ripening agent.


Assuntos
Acetileno/análogos & derivados , Apoptose , Fibroblastos , Acetileno/toxicidade , Animais , Sobrevivência Celular
4.
Bioresour Technol ; 351: 126910, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35231601

RESUMO

Algae have been identified as natural producer of bioactive commercial pigments. To perform photosynthesis, algae use pigments to harvest sunlight energy. The pigments found in algae are categorized in chlorophylls, phycobilins, and carotenoids. Popular carotenoids include astaxanthin, lutein,fucoxanthin, canthaxanthin, zeaxanthin, ß-cryptoxanthin and finds application as antioxidant, anti-inflammatory, immunoprophylactic, antitumor activities among others. Due to double-bonds in their structure, they exhibit broad health applications while protecting other molecules from oxidative stress induced by active radicals using various mechanisms. These carotenoids are synthesized by certain species as major products however they also present as byproducts in several species based on the pathway and genetic capability. Haematococcus pluvialis and Chlorella zofingiensis are ideal strains for commercial astaxanthin production. This review provides recent updates on microalgal pigment production, extraction, and purification processes to standardize and analyze for commercial production. Also, discussed the factors affecting its production, application, market potential, bottlenecks, and future prospects.


Assuntos
Chlorella , Clorofíceas , Microalgas , Carotenoides/metabolismo , Chlorella/metabolismo , Clorofíceas/metabolismo , Luteína/metabolismo , Microalgas/metabolismo , Zeaxantinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA