Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Cell Mol Life Sci ; 80(4): 109, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995466

RESUMO

Signal transducer and activator of transcription (STAT) proteins act downstream of cytokine receptors to facilitate changes in gene expression that impact a range of developmental and homeostatic processes. Patients harbouring loss-of-function (LOF) STAT5B mutations exhibit postnatal growth failure due to lack of responsiveness to growth hormone as well as immune perturbation, a disorder called growth hormone insensitivity syndrome with immune dysregulation 1 (GHISID1). This study aimed to generate a zebrafish model of this disease by targeting the stat5.1 gene using CRISPR/Cas9 and characterising the effects on growth and immunity. The zebrafish Stat5.1 mutants were smaller, but exhibited increased adiposity, with concomitant dysregulation of growth and lipid metabolism genes. The mutants also displayed impaired lymphopoiesis with reduced T cells throughout the lifespan, along with broader disruption of the lymphoid compartment in adulthood, including evidence of T cell activation. Collectively, these findings confirm that zebrafish Stat5.1 mutants mimic the clinical impacts of human STAT5B LOF mutations, establishing them as a model of GHISID1.


Assuntos
Síndrome de Laron , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Fator de Transcrição STAT5/genética , Síndrome de Laron/genética , Mutação , Hormônio do Crescimento/genética
2.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397094

RESUMO

The immune system comprises distinct innate and adaptive arms, each of which contains many layers to provide a coordinated, sequential immune response to insults [...].


Assuntos
Sistema Imunitário , Imunidade Inata , Fatores Imunológicos , Imunidade Adaptativa
3.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474223

RESUMO

The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.


Assuntos
Síndromes de Imunodeficiência , Neoplasias , Animais , Humanos , Janus Quinase 3/metabolismo , Transdução de Sinais , Janus Quinases/metabolismo , Receptores de Citocinas/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo
4.
FASEB J ; 36(5): e22320, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35470501

RESUMO

The cytokine-inducible SH2 domain containing protein (CISH) is the founding member of the suppressor of cytokine signaling (SOCS) family of negative feedback regulators and has been shown to be a physiological regulator of signaling in immune cells. This study sought to investigate novel functions for CISH outside of the immune system. Mice deficient in CISH were generated and analyzed using a range of metabolic and other parameters, including in response to a high fat diet and leptin administration. CISH knockout mice possessed decreased body fat and showed resistance to diet-induced obesity. This was associated with reduced food intake, but unaltered energy expenditure and microbiota composition. CISH ablation resulted in reduced basal expression of the orexigenic Agrp gene in the arcuate nucleus (ARC) region of the brain. Cish was basally expressed in the ARC, with evidence of co-expression with the leptin receptor (Lepr) gene in Agrp-positive neurons. CISH-deficient mice also showed enhanced leptin responsiveness, although Cish expression was not itself modulated by leptin. CISH-deficient mice additionally exhibited improved insulin sensitivity on a high-fat diet, but not glucose tolerance despite reduced body weight. These data identify CISH as an important regulator of homeostasis through impacts on appetite control, mediated at least in part by negative regulation of the anorexigenic effects of leptin, and impacts on glucose metabolism.


Assuntos
Adiposidade , Leptina , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Citocinas/metabolismo , Ingestão de Alimentos , Glucose/metabolismo , Leptina/metabolismo , Camundongos , Obesidade/genética , Obesidade/metabolismo , Proteínas Supressoras da Sinalização de Citocina , Domínios de Homologia de src
5.
Cell Mol Life Sci ; 79(6): 322, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622134

RESUMO

BACKGROUND: Janus kinase 3 (JAK3) acts downstream of the interleukin-2 (IL-2) receptor family to play a pivotal role in the regulation of lymphoid cell development. Activating JAK3 mutations are associated with a number of lymphoid and other malignancies, with mutations within the regulatory pseudokinase domain common. METHODS: The pseudokinase domain mutations A572V and A573V were separately introduced into the highly conserved zebrafish Jak3 and transiently expressed in cell lines and zebrafish embryos to examine their activity and impact on early T cells. Genome editing was subsequently used to introduce the A573V mutation into the zebrafish genome to study the effects of JAK3 activation on lymphoid cells in a physiologically relevant context throughout the life-course. RESULTS: Zebrafish Jak3 A573V produced the strongest activation of downstream STAT5 in vitro and elicited a significant increase in T cells in zebrafish embryos. Zebrafish carrying just a single copy of the Jak3 A573V allele displayed elevated embryonic T cells, which continued into adulthood. Hematopoietic precursors and NK cells were also increased, but not B cells. The lymphoproliferative effects of Jak3 A573V in embryos was shown to be dependent on zebrafish IL-2Rγc, JAK1 and STAT5B equivalents, and could be suppressed with the JAK3 inhibitor Tofacitinib. CONCLUSIONS: This study demonstrates that a single JAK3 A573V allele expressed from the endogenous locus was able to enhance lymphopoiesis throughout the life-course, which was mediated via an IL-2Rγc/JAK1/JAK3/STAT5 signaling pathway and was sensitive to Tofacitinib. This extends our understanding of oncogenic JAK3 mutations and creates a novel model to underpin further translational investigations.


Assuntos
Janus Quinase 3 , Fator de Transcrição STAT5 , Animais , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Mutação/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373498

RESUMO

This Special Issue represents a collective celebration of the cytokine receptor superfamily and the myriad of functions mediated by these important molecules in development and homeostasis, as well as their disruption in disease [...].


Assuntos
Receptores de Citocinas , Transdução de Sinais , Transdução de Sinais/fisiologia , Homeostase
7.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203559

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor activated canonically by numerous cytokines and other factors, with significant roles in immunity, immune diseases, and cancer. It has also been implicated in several human skeletal disorders, with loss-of-function (LOF) mutations associated with aberrant skeletal development. To gain further insights, two zebrafish STAT3 lines were investigated: a complete LOF knockout (KO) mutant and a partial LOF mutant with the transactivation domain truncated (ΔTAD). Consistent with other studies, the KO mutants were smaller, with reduced length in early embryos exacerbated by a decreased growth rate from 5 days postfertilization (dpf). They displayed skeletal deformities that approached 80% incidence by 30 dpf, with a significant reduction in early bone but not cartilage formation. Further analysis additionally identified considerable abrogation of caudal fin regeneration, concomitant with a paucity of infiltrating macrophages and neutrophils, which may be responsible for this. Most of these phenotypes were also observed in the ΔTAD mutants, indicating that loss of canonical STAT3 signaling was the likely cause. However, the impacts on early bone formation and regeneration were muted in the ΔTAD mutant, suggesting the potential involvement of noncanonical functions in these processes.


Assuntos
Fator de Transcrição STAT3 , Peixe-Zebra , Animais , Humanos , Desenvolvimento Ósseo/genética , Condrogênese , Osteogênese/genética , Fator de Transcrição STAT3/genética , Peixe-Zebra/genética
8.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628937

RESUMO

Cytokine-inducible SH2 domain-containing protein (CISH) is a member of the suppressor of cytokine signaling (SOCS) family of negative feedback regulators shown to play crucial roles in lymphoid cell development and function as well as appetite regulation. It has also been implicated in the control of signaling downstream of the receptors for the cytokines granulocyte/macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) in myeloid cells. To investigate the physiological role of CISH in myelopoiesis, mice deficient in CISH were analyzed basally and in response to administration of these cytokines. CISH knockout (KO) mice possessed basally elevated neutrophils in the blood, bone marrow, and spleen compared to wild-type (WT) mice. During GM-CSF-induced myelopoiesis, the frequency of neutrophils, myeloid dendritic cells (DCs), and CFU-M in the bone marrow was higher in the KO, as were the neutrophils and CFU-G in the spleen. In contrast, no differences were observed between KO and WT mice during G-CSF-induced myelopoiesis apart from an elevated frequency of CFU-G and CFU-M in the spleen. This work has identified a role for CISH in the negative regulation of granulopoiesis, including that mediated by GM-CSF.


Assuntos
Citocinas , Proteínas Supressoras da Sinalização de Citocina , Animais , Camundongos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Mielopoese , Domínios de Homologia de src , Proteínas Supressoras da Sinalização de Citocina/metabolismo
9.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047441

RESUMO

Primary immunodeficiency (PID) disorders, also commonly referred to as inborn errors of immunity, are a heterogenous group of human genetic diseases characterized by defects in immune cell development and/or function. Since these disorders are generally uncommon and occur on a variable background profile of potential genetic and environmental modifiers, animal models are critical to provide mechanistic insights as well as to create platforms to underpin therapeutic development. This review aims to review the relevance of zebrafish as an alternative genetic model for PIDs. It provides an overview of the conservation of the zebrafish immune system and details specific examples of zebrafish models for a multitude of specific human PIDs across a range of distinct categories, including severe combined immunodeficiency (SCID), combined immunodeficiency (CID), multi-system immunodeficiency, autoinflammatory disorders, neutropenia and defects in leucocyte mobility and respiratory burst. It also describes some of the diverse applications of these models, particularly in the fields of microbiology, immunology, regenerative biology and oncology.


Assuntos
Síndromes de Imunodeficiência , Doença Inflamatória Pélvica , Doenças da Imunodeficiência Primária , Imunodeficiência Combinada Severa , Feminino , Animais , Humanos , Peixe-Zebra/genética , Modelos Genéticos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/terapia , Doenças da Imunodeficiência Primária/genética , Imunodeficiência Combinada Severa/genética
10.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077499

RESUMO

Members of the FOS protein family regulate gene expression responses to a multitude of extracellular signals and are dysregulated in several pathological states. Whilst mouse genetic models have provided key insights into the tissue-specific functions of these proteins in vivo, little is known about their roles during early vertebrate embryonic development. This study examined the potential of using zebrafish as a model for such studies and, more broadly, for investigating the mechanisms regulating the functions of Fos proteins in vivo. Through phylogenetic and sequence analysis, we identified six zebrafish FOS orthologues, fosaa, fosab, fosb, fosl1a, fosl1b, and fosl2, which show high conservation in key regulatory domains and post-translational modification sites compared to their equivalent human proteins. During embryogenesis, zebrafish fos genes exhibit both overlapping and distinct spatiotemporal patterns of expression in specific cell types and tissues. Most fos genes are also expressed in a variety of adult zebrafish tissues. As in humans, we also found that expression of zebrafish FOS orthologs is induced by oncogenic BRAF-ERK signalling in zebrafish melanomas. These findings suggest that zebrafish represent an alternate model to mice for investigating the regulation and functions of Fos proteins in vertebrate embryonic and adult tissues, and cancer.


Assuntos
Proteínas Proto-Oncogênicas c-fos , Fatores de Transcrição , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Filogenia , Proteínas Proto-Oncogênicas c-fos/genética , Fatores de Transcrição/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
11.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216498

RESUMO

The IL-2 family of cytokines act via receptor complexes that share the interleukin-2 receptor gamma common (IL-2Rγc) chain to play key roles in lymphopoiesis. Inactivating IL-2Rγc mutations results in severe combined immunodeficiency (SCID) in humans and other species. This study sought to generate an equivalent zebrafish SCID model. The zebrafish il2rga gene was targeted for genome editing using TALENs and presumed loss-of-function alleles analyzed with respect to immune cell development and impacts on intestinal microbiota and tumor immunity. Knockout of zebrafish Il-2rγc.a resulted in a SCID phenotype, including a significant reduction in T cells, with NK cells also impacted. This resulted in dysregulated intestinal microbiota and defective immunity to tumor xenotransplants. Collectively, this establishes a useful zebrafish SCID model.


Assuntos
Imunodeficiência Combinada Severa/metabolismo , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Microbioma Gastrointestinal/fisiologia , Subunidade gama Comum de Receptores de Interleucina , Células Matadoras Naturais/metabolismo , Linfopoese/fisiologia , Modelos Animais , Fenótipo , Linfócitos T/metabolismo
12.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808504

RESUMO

Prostate cancer remains a leading cause of cancer-related morbidity in men. Potentially important regulators of prostate cancer progression are members of the metzincin superfamily of proteases, principally through their regulation of the extracellular matrix. It is therefore timely to review the role of the metzincin superfamily in prostate cancer and its progression to better understand their involvement in this disease. A systematic-like search strategy was conducted. Articles that investigated the roles of members of the metzincin superfamily and their key regulators in prostate cancer were included. The extracted articles were synthesized and data presented in tabular and narrative forms. Two hundred and five studies met the inclusion criteria. Of these, 138 investigated the role of the Matrix Metalloproteinase (MMP) subgroup, 34 the Membrane-Tethered Matrix Metalloproteinase (MT-MMP) subgroup, 22 the A Disintegrin and Metalloproteinase (ADAM) subgroup, 8 the A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) subgroup and 53 the Tissue Inhibitor of Metalloproteinases (TIMP) family of regulators, noting that several studies investigated multiple family members. There was clear evidence that specific members of the metzincin superfamily are involved in prostate cancer progression, which can be either in a positive or negative manner. However, further understanding of their mechanisms of action and how they may be used as prognostic indicators or molecular targets is required.


Assuntos
Metaloproteases/metabolismo , Metaloproteases/fisiologia , Neoplasias da Próstata/metabolismo , Proteínas ADAM/metabolismo , Proteínas ADAMTS/metabolismo , Matriz Extracelular/fisiologia , Humanos , Masculino , Metaloproteinases da Matriz/metabolismo , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Próstata/patologia , Inibidores Teciduais de Metaloproteinases/metabolismo
13.
Pediatr Allergy Immunol ; 31(1): 38-46, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31566807

RESUMO

BACKGROUND: High folate status in pregnancy has been implicated in the increased prevalence of allergic disease, but there are no published data relating directly measured folate status in pregnancy to challenge-proven food allergy among offspring. The study aim was to examine the association between red blood cell (RBC) folate status in trimester three of pregnancy and allergic disease among offspring. METHODS: Red blood cell folate levels were measured at 28-32 weeks' gestation in a prospective birth cohort (n = 1074). Food allergy outcomes were assessed in 1-year-old infants by skin prick testing and subsequent food challenge. Eczema was assessed by questionnaire and clinical review. High trimester three RBC folate was defined as greater than (>) 1360 nmol/L. Binomial regression was used to examine associations between trimester three RBC folate and allergic outcomes, adjusting for potential confounders. RESULTS: Red blood cell folate levels were measured in 88% (894/1064) of pregnant women. The mean concentration was 1695.6 nmol/L (standard deviation 415.4) with 82% (731/894) >1360 nmol/L. There was no evidence of either linear or non-linear relationships between trimester three RBC folate and allergic outcomes, nor evidence of associations between high RBC folate and food allergy (adjusted risk ratio (aRR) 2.89, 95% CI 0.90-9.35), food sensitization (aRR 1.72, 95% CI 0.85-3.49), or eczema (aRR 0.97, 95% CI 0.67-1.38). CONCLUSION: The majority of pregnant women in this study had high RBC folate levels. There was no evidence of associations between trimester three RBC folate and food allergy, food sensitization, or eczema among the offspring, although larger studies are required.


Assuntos
Eczema/epidemiologia , Ácido Fólico/sangue , Hipersensibilidade Alimentar/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/sangue , Feminino , Humanos , Masculino , Gravidez
14.
Infect Immun ; 87(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30455199

RESUMO

Granulocyte colony-stimulating factor receptor (G-CSFR), encoded by the CSF3R gene, represents a major regulator of neutrophil production and function in mammals, with inactivating extracellular mutations identified in a cohort of neutropenia patients unresponsive to G-CSF treatment. This study sought to elucidate the role of the zebrafish G-CSFR by generating mutants harboring these inactivating extracellular mutations using genome editing. Zebrafish csf3r mutants possessed significantly decreased numbers of neutrophils from embryonic to adult stages, which were also functionally compromised, did not respond to G-CSF, and displayed enhanced susceptibility to bacterial infection. The study has identified an important role for the zebrafish G-CSFR in maintaining the number and functionality of neutrophils throughout the life span and created a bona fide zebrafish model of nonresponsive neutropenia.


Assuntos
Neutropenia/fisiopatologia , Neutrófilos/fisiologia , Receptores de Fator Estimulador de Colônias de Granulócitos/fisiologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Edição de Genes , Fator Estimulador de Colônias de Granulócitos , Células Mieloides/citologia , Neutropenia/patologia , Neutrófilos/citologia , Receptores de Fator Estimulador de Colônias de Granulócitos/deficiência , Peixe-Zebra/embriologia
15.
J Immunol ; 197(1): 11-8, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27317733

RESUMO

Cytokines represent essential mediators of cell-cell communication with particularly important roles within the immune system. These secreted factors are produced in response to developmental and/or environmental cues and act via cognate cytokine receptors on target cells, stimulating specific intracellular signaling pathways to facilitate appropriate cellular responses. This review describes the evolution of cytokine receptor signaling, focusing on the class I and class II receptor families and the downstream JAK-STAT pathway along with its key negative regulators. Individual components generated over a long evolutionary time frame coalesced to form an archetypal signaling pathway in bilateria that was expanded extensively during early vertebrate evolution to establish a substantial "core" signaling network, which has subsequently undergone limited diversification within discrete lineages. The evolution of cytokine receptor signaling parallels that of the immune system, particularly the emergence of adaptive immunity, which has likely been a major evolutionary driver.


Assuntos
Evolução Biológica , Citocinas/imunologia , Receptores de Citocinas/imunologia , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/imunologia , Imunidade Adaptativa , Animais , Humanos , Transdução de Sinais/imunologia
16.
J Immunol ; 196(1): 135-43, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26590317

RESUMO

The IL-2 receptor γ common (IL-2Rγc) chain is the shared subunit of the receptors for the IL-2 family of cytokines, which mediate signaling through JAK3 and various downstream pathways to regulate lymphopoiesis. Inactivating mutations in human IL-2Rγc result in SCID, a primary immunodeficiency characterized by greatly reduced numbers of lymphocytes. This study used bioinformatics, expression analysis, gene ablation, and specific pharmacologic inhibitors to investigate the function of two putative zebrafish IL-2Rγc paralogs, il-2rγc.a and il-2rγc.b, and downstream signaling components during early lymphopoiesis. Expression of il-2rγc.a commenced at 16 h post fertilization (hpf) and rose steadily from 4-6 d postfertilization (dpf) in the developing thymus, with il-2rγc.a expression also confirmed in adult T and B lymphocytes. Transcripts of il-2rγc.b were first observed from 8 hpf, but waned from 16 hpf before reaching maximal expression at 6 dpf, but this was not evident in the thymus. Knockdown of il-2rγc.a, but not il-2rγc.b, substantially reduced embryonic lymphopoiesis without affecting other aspects of hematopoiesis. Specific targeting of zebrafish Jak3 exerted a similar effect on lymphopoiesis, whereas ablation of zebrafish Stat5.1 and pharmacologic inhibition of PI3K and MEK also produced significant but smaller effects. Ablation of il-2rγc.a was further demonstrated to lead to an absence of mature T cells, but not B cells in juvenile fish. These results indicate that conserved IL-2Rγc signaling via JAK3 plays a key role during early zebrafish lymphopoiesis, which can be potentially targeted to generate a zebrafish model of human SCID.


Assuntos
Janus Quinase 3/genética , Linfopoese/imunologia , Receptores de Interleucina-2/imunologia , Imunodeficiência Combinada Severa/imunologia , Proteínas de Peixe-Zebra/imunologia , Animais , Linfócitos B/imunologia , Linhagem Celular , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Linfopoese/genética , MAP Quinase Quinase 1/antagonistas & inibidores , Morfolinos/genética , Inibidores de Fosfoinositídeo-3 Quinase , Receptores de Interleucina-2/genética , Fator de Transcrição STAT5/genética , Imunodeficiência Combinada Severa/genética , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
17.
Int J Mol Sci ; 19(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518972

RESUMO

The ADAMTS5 metzincin, a secreted zinc-dependent metalloproteinase, modulates the extracellular matrix (ECM) during limb morphogenesis and other developmental processes. Here, the role of ADAMTS5 was investigated by knockdown of zebrafish adamts5 during embryogenesis. This revealed impaired Sonic Hedgehog (Shh) signaling during somite patterning and early myogenesis. Notably, synergistic regulation of myod expression by ADAMTS5 and Shh during somite differentiation was observed. These roles were not dependent upon the catalytic activity of ADAMTS5. These data identify a non-enzymatic function for ADAMTS5 in regulating an important cell signaling pathway that impacts on muscle development, with implications for musculoskeletal diseases in which ADAMTS5 and Shh have been associated.


Assuntos
Proteína ADAMTS5/genética , Diferenciação Celular , Somitos/embriologia , Somitos/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteína ADAMTS5/metabolismo , Animais , Embrião não Mamífero , Espaço Extracelular , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Proteínas Hedgehog/metabolismo , Morfogênese/genética , Desenvolvimento Muscular/genética , Transdução de Sinais
18.
Biochem J ; 473(14): 2011-22, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27407170

RESUMO

The a disintegrin-like and metalloproteinase with thrombospondin type-1 motifs (ADAMTS) family of metzincins are complex secreted proteins that have diverse functions during development. The hyalectanases (ADAMTS1, 4, 5, 8, 9, 15 and 20) are a subset of this family that have enzymatic activity against hyalectan proteoglycans, the processing of which has important implications during development. This review explores the evolution, expression and developmental functions of the ADAMTS family, focusing on the ADAMTS hyalectanases and their substrates in diverse species. This review gives an overview of how the family and their substrates evolved from non-vertebrates to mammals, the expression of the hyalectanases and substrates in different species and their functions during development, and how these functions are conserved across species.


Assuntos
Proteínas ADAMTS/metabolismo , Proteínas ADAMTS/química , Proteínas ADAMTS/classificação , Animais , Evolução Biológica , Humanos , Modelos Biológicos , Filogenia , Conformação Proteica
19.
Mediators Inflamm ; 2017: 7517350, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29362521

RESUMO

Granulocyte colony-stimulating factor (G-CSF) was originally discovered in the context of hematopoiesis. However, the identification of the G-CSF receptor (G-CSFR) being expressed outside the hematopoietic system has revealed wider roles for G-CSF, particularly in tissue repair and regeneration. Skeletal muscle damage, including that following strenuous exercise, induces an elevation in plasma G-CSF, implicating it as a potential mediator of skeletal muscle repair. This has been supported by preclinical studies and clinical trials investigating G-CSF as a potential therapeutic agent in relevant disease states. This review focuses on the growing literature associated with G-CSF and G-CSFR in skeletal muscle under healthy and disease conditions and highlights the current controversies.


Assuntos
Fator Estimulador de Colônias de Granulócitos/farmacologia , Músculo Esquelético/efeitos dos fármacos , Receptores de Fator Estimulador de Colônias de Granulócitos/fisiologia , Regeneração/efeitos dos fármacos , Animais , Fator Estimulador de Colônias de Granulócitos/sangue , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Humanos , Músculo Esquelético/fisiologia , Doenças Musculares/tratamento farmacológico , Fosfatidilinositol 3-Quinases/fisiologia , Transdução de Sinais/efeitos dos fármacos
20.
J Immunol ; 192(12): 5739-48, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24835394

RESUMO

Cytokine-inducible SH2 domain-containing protein (CISH), a member of the suppressor of cytokine signaling family of negative feedback regulators, is induced by cytokines that activate STAT5 and can inhibit STAT5 signaling in vitro. However, demonstration of a definitive in vivo role for CISH during development has remained elusive. This study employed expression analysis and morpholino-mediated knockdown in zebrafish in concert with bioinformatics and biochemical approaches to investigate CISH function. Two zebrafish CISH paralogs were identified, cish.a and cish.b, with high overall conservation (43-46% identity) with their mammalian counterparts. The cish.a gene was maternally derived, with transcripts present throughout embryogenesis, and increasing at 4-5 d after fertilization, whereas cish.b expression commenced at 8 h after fertilization. Expression of cish.a was regulated by the JAK2/STAT5 pathway via conserved tetrameric STAT5 binding sites (TTCN3GAA) in its promoter. Injection of morpholinos targeting cish.a, but not cish.b or control morpholinos, resulted in enhanced embryonic erythropoiesis, myelopoiesis, and lymphopoiesis, including a 2- 3-fold increase in erythrocytic markers. This occurred concomitantly with increased activation of STAT5. This study indicates that CISH functions as a conserved in vivo target and regulator of STAT5 in the control of embryonic hematopoiesis.


Assuntos
Embrião não Mamífero/imunologia , Hematopoese/imunologia , Fator de Transcrição STAT5/imunologia , Proteínas Supressoras da Sinalização de Citocina/imunologia , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/imunologia , Animais , Sequência de Bases , Hematopoese/genética , Janus Quinase 2/genética , Janus Quinase 2/imunologia , Dados de Sequência Molecular , Fator de Transcrição STAT5/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA