Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Glob Chang Biol ; 30(6): e17356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38853470

RESUMO

Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3-day shift in average peak date for every increment of 80 cumulative thawing degree-days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree-days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.


Assuntos
Artrópodes , Biomassa , Estações do Ano , Temperatura , Animais , Regiões Árticas , Artrópodes/fisiologia , Mudança Climática , Cadeia Alimentar , Charadriiformes/fisiologia , Migração Animal
2.
Glob Chang Biol ; 30(5): e17335, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38771086

RESUMO

Global climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic-breeding shorebird species at 18 sites over a 23-year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species-level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer-distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long-distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.


Assuntos
Migração Animal , Mudança Climática , Comportamento de Nidação , Estações do Ano , Animais , Regiões Árticas , Migração Animal/fisiologia , Feminino , Charadriiformes/fisiologia , Reprodução
3.
J Anim Ecol ; 89(10): 2290-2299, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32596854

RESUMO

Evolutionary and behavioural ecologists have long been interested in factors shaping the variation in mating behaviour observed in nature. Although much of the research on this topic has focused on the consequences of mate choice and mate change on annual reproductive success, studies of a potential positive link between mate fidelity and adult demographic rates have been comparatively rare. This is particularly true for long-lived birds with multi-year, socially monogamous pair bonds. We used a 26-year capture-mark-recapture dataset of 3,330 black brent Branta bernicla nigricans to test whether breeding with a familiar mate improved future breeding propensity and survival. We predicted that experienced breeders nesting with a new partner would have rates of survival similar to familiar pairs because long-lived species avoid jeopardizing survival since their lifetime fitness is sensitive to this vital rate. In contrast, we expected that any costs of breeding with a new partner would be paid through skipping the subsequent breeding attempt. We found that unfamiliar pairs had lower subsequent breeding propensity than faithful partners. However, contrary to our expectations, individuals breeding with a new mate also suffered reduced survival. These results add to a small number of studies indicating that a positive relationship between mate retention and adult demographic rates may exist in a diverse array of avian species. Given these results, researchers should consider costs of mate change that extend beyond within-season reproductive success to fully understand the potential adaptive basis for perennial social monogamy. We caution that if mate retention enhances survival prospects, improvements in annual reproductive success with pair-bond length could be a secondary factor favouring perennial social monogamy, particularly in species with slower life-history strategies. Furthermore, some cases where annual reproductive success does not improve with pair-bond duration, yet multi-year pair bonds are common, could be explained by benefits afforded by mate fidelity to adult vital rates.


Assuntos
Ligação do Par , Reprodução , Animais , Evolução Biológica , Aves , Estações do Ano
4.
Am Nat ; 193(3): 458-471, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30794452

RESUMO

Estimation of trade-offs between current reproduction and future survival and fecundity of long-lived vertebrates is essential to understanding factors that shape optimal reproductive investment. Black brant geese (Branta bernicla nigricans) fledge more goslings, on average, when their broods are experimentally enlarged to be greater than the most common clutch size of four eggs. Thus, we hypothesized that the lesser frequency of brant clutches exceeding four eggs results, at least partially, from a future reduction in survival, breeding probability, or clutch size for females tending larger broods. We used an 8-year mark-recapture data set (Barker robust design) with 5 years of clutch and brood manipulations to estimate long-term consequences of reproductive decisions in brant. We did not find evidence of a trade-off between reproductive effort and true survival or future initiation date and clutch size. Rather, future breeding probability was maximized ( 0.92±0.03 [SE]) for manipulated females tending broods of four goslings and was lower for females tending smaller (one gosling; 0.63±0.09 [SE]) or larger (seven goslings; 0.52±0.15 [SE]) broods. Our results suggest that demographic trade-offs for female brant tending large broods may reduce the fitness value of clutches larger than four and, therefore, contribute to the paucity of larger clutches. The lack of a trade-off between reproductive effort and survival provides evidence that survival, to which fitness is most sensitive in long-lived animals, is buffered against temporal variation in brant.


Assuntos
Tamanho da Ninhada , Gansos , Aptidão Genética , Reprodução , Animais , Tamanho Corporal , Feminino
5.
Glob Chang Biol ; 24(11): 5056-5071, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30092605

RESUMO

The macronutrients that Arctic herbivores invest in their offspring are derived from endogenous reserves of fat and protein (capital) that females build prior to the period of investment or from foods they consume concurrently with investment (income). The relative contribution from each source can be influenced by temporal and environmental constraints on a female's ability to forage on Arctic breeding areas. Warming temperatures and advancing Arctic phenology may alter those constraints. From 2011 to 2014, we examined relationships among spring temperature, timing of migration and reproduction, and the sources of nutrients females deposited in eggs for three sympatric species of geese that nested in northern Alaska. Compared to lesser snow geese (Anser caerulescens caerulescens) and greater white-fronted geese (Anser albifrons frontalis), black brant (Branta bernicla nigricans) were more likely to initiate follicle development during migration, resulting in fewer days between their arrival in the Arctic and the onset of incubation and requiring a relatively greater capital investment in eggs. Delaying follicle development until after their arrival in the Arctic provided snow geese and white-fronted geese an opportunity to forage near their nesting area and to deposit exogenous nutrients in eggs. With warmer spring temperatures, brant invested more capital in eggs, but snow geese invested less capital. Brant likely used capital to meet costs associated with earlier onset of follicle development when phenology was advanced, whereas snow geese used capital to compensate for poor foraging conditions during colder Arctic springs. Global warming is likely to reduce the quality of lower latitude marine habitats where brant acquire endogenous reserves and advancing Arctic phenology may increase their reliance on those reserves during reproduction. Near-term warming in northern Alaska may improve foraging conditions and favor the reproductive strategies of some herbivores such as snow geese and white-fronted geese that mainly invest Arctic nutrients in their offspring.


Assuntos
Migração Animal , Fenômenos Fisiológicos da Nutrição Animal , Gansos/fisiologia , Aquecimento Global , Adaptação Fisiológica , Alaska , Animais , Regiões Árticas , Cruzamento , Ecossistema , Feminino , Gansos/crescimento & desenvolvimento , Óvulo , Reprodução , Estações do Ano , Temperatura
6.
Ecology ; 95(5): 1323-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25000763

RESUMO

Ideal free distribution theory predicts that individuals distribute themselves so fitness is equal among patches. In this paper we evaluate all components of adult fitness to assess the hypothesis that individuals distribute themselves among seven brood-rearing areas so that trade-offs among different life history traits result in equal mean fitness among individuals using different areas. We used estimates of vital rates (clutch size, nest survival, pre-fledging survival, post-fledging survival, juvenile survival, and breeding probability) to estimate brood-rearing-area-specific per capita recruitment rates and survival for adult females. We summed brood-rearing-area-specific per capita recruitment and adult survival to calculate brood-rearing-area-specific estimates of lambda. We found little variation in lambda among brood-rearing areas and lifetime fitness implications of changing brood-rearing area were negligible (< 1% brood-rearing area mean fitness). We conclude that adult female Black Brant distribute themselves in an ideal free manner, resulting in equal fitness among females using these areas.


Assuntos
Anseriformes/fisiologia , Envelhecimento , Alaska , Animais , Demografia , Feminino , Humanos , Reprodução , Fatores de Tempo
7.
Ecol Evol ; 14(4): e11245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601857

RESUMO

Genetic variation in Arctic species is often influenced by vicariance during the Pleistocene, as ice sheets fragmented the landscape and displaced populations to low- and high-latitude refugia. The formation of secondary contact or suture zones during periods of ice sheet retraction has important consequences on genetic diversity by facilitating genetic connectivity between formerly isolated populations. Brant geese (Branta bernicla) are a maritime migratory waterfowl (Anseriformes) species that almost exclusively uses coastal habitats. Within North America, brant geese are characterized by two phenotypically distinct subspecies that utilize disjunct breeding and wintering areas in the northern Pacific and Atlantic. In the Western High Arctic of Canada, brant geese consist of individuals with an intermediate phenotype that are rarely observed nesting outside this region. We examined the genetic structure of brant geese populations from each subspecies and areas consisting of intermediate phenotypes using mitochondrial DNA (mtDNA) control region sequence data and microsatellite loci. We found a strong east-west partition in both marker types consistent with refugial populations. Within subspecies, structure was also observed at mtDNA while microsatellite data suggested the presence of only two distinct genetic clusters. The Western High Arctic (WHA) appears to be a secondary contact zone for both Atlantic and Pacific lineages as mtDNA and nuclear genotypes were assigned to both subspecies, and admixed individuals were observed in this region. The mtDNA sequence data outside WHA suggests no or very restricted intermixing between Atlantic and Pacific wintering populations which is consistent with published banding and telemetry data. Our study indicates that, although brant geese in the WHA are not a genetically distinct lineage, this region may act as a reservoir of genetic diversity and may be an area of high conservation value given the potential of low reproductive output in this species.

8.
Rev Biol Trop ; 61(2): 927-35, 2013 Jun.
Artigo em Espanhol | MEDLINE | ID: mdl-23885600

RESUMO

The Black Brant is a common inhabitant of the Western Artic American tundra, which migrates to Southern Pacific coasts during the winter season. Approximately, 31000 birds (31%) constitute the Mexican population of Brants at Guerrero Negro, Ojo de Liebre, and Exportadora de Sal lagoon complex; nevertheless, there is little information about the distribution patterns and zone usage. At Guerrero Negro Lagoon (GNL), Ojo de Liebre Lagoon (OLL, both natural sites), and at Exportadora de Sal (ESSA, artificial site) we determined by monthly censuses (from November 2006 to April 2007, 08:00-16:00h) and observed: (1) season and site effects on population structure (age groups), and (2) the tide level relationship with the abundance and proportion of feeding birds. Within a total of 150 observation hours and 98 birds, our results showed a general 0.68 proportion of adults, that was higher in winter than in spring. The statistics analysis showed no effects by site on the proportion of feeding birds, but we observed a temporal decrease at ESSA and at GNL. In contrast the proportion of feeding birds at OLL was constant. We observed an increase in the juveniles between winter and spring. This increase is related with the differential migration, which mentions that the juveniles are the last to leave the wintering area. In winter the relations of the tide level with the abundance of Brant were: direct at ESSA, inverse at OLL and no relation found at GNL. In spring, no relation was observed in the sites. The proportion of Brants feeding at OLL (the site with the higher abundance) was independent of the tide level. This is related with two possible behaviors of the geese: (1) they can move through the lagoon and take advantage of the tidal lag, which is up to four hours; and (2) they can modify their feeding strategies, more on floating eelgrass (Zostera marina).


Assuntos
Migração Animal/fisiologia , Anseriformes/fisiologia , Ecossistema , Comportamento Alimentar/fisiologia , Animais , Anseriformes/classificação , México , Densidade Demográfica , Dinâmica Populacional , Estações do Ano
9.
Nat Plants ; 9(8): 1207-1220, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37474781

RESUMO

Currents are unique drivers of oceanic phylogeography and thus determine the distribution of marine coastal species, along with past glaciations and sea-level changes. Here we reconstruct the worldwide colonization history of eelgrass (Zostera marina L.), the most widely distributed marine flowering plant or seagrass from its origin in the Northwest Pacific, based on nuclear and chloroplast genomes. We identified two divergent Pacific clades with evidence for admixture along the East Pacific coast. Two west-to-east (trans-Pacific) colonization events support the key role of the North Pacific Current. Time-calibrated nuclear and chloroplast phylogenies yielded concordant estimates of the arrival of Z. marina in the Atlantic through the Canadian Arctic, suggesting that eelgrass-based ecosystems, hotspots of biodiversity and carbon sequestration, have only been present there for ~243 ky (thousand years). Mediterranean populations were founded ~44 kya, while extant distributions along western and eastern Atlantic shores were founded at the end of the Last Glacial Maximum (~19 kya), with at least one major refuge being the North Carolina region. The recent colonization and five- to sevenfold lower genomic diversity of the Atlantic compared to the Pacific populations raises concern and opportunity about how Atlantic eelgrass might respond to rapidly warming coastal oceans.


Assuntos
Ecossistema , Zosteraceae , Zosteraceae/genética , Canadá , Filogeografia , Oceanos e Mares
10.
Ecol Appl ; 22(6): 1743-61, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23092012

RESUMO

Managers need to predict how animals will respond to habitat redistributions caused by climate change. Our objective was to model the effects of sea level rise on total eelgrass (Zostera marina) habitat area and on the amount of that area that is accessible to Brant geese (Branta bernicla), specialist grazers of eelgrass. Digital elevation models were developed for seven estuaries from Alaska, Washington, California (USA), and Mexico. Scenarios of future total eelgrass area were derived from combinations of estuarine specific sediment and tectonic rates (i.e., bottom change rate) with three rates of eustatic sea level rise (ESLR). Percentages of total eelgrass areas that were accessible to foraging Brant were determined for December when the birds overwinter at more southerly sites and in April as they move north to sites where they build body stores on their way to nesting areas in Alaska. The modeling showed that accessible eelgrass area could be lower than total area due to how daytime low-tide height, eelgrass shoot length, and the upper elevation of eelgrass determined Brant-reaching depth. Projections of future eelgrass area indicated that present-day ESLR (2.8 mm/yr) and bottom change rates should sustain the current pattern of estuarine use by Brant except in Morro Bay, where use should decrease because eelgrass is being ejected from this estuary by a positive bottom change rate. Higher ESLR rates (6.3 and 12.7 mm/yr) should result in less Brant use of estuaries at the northern and southern ends of the flyway, particularly during the winter, but more use of mid-latitude estuaries. The capacity of mid-latitude estuaries to function as Brant feeding refugia, or for these estuaries and Izembek Lagoon to provide drift rather than attached leaves, is eventually limited by the decrease in total eelgrass area, which is a result of a light extinction affect on the eelgrass, or the habitat being pushed out of the estuary by positive tectonic rates. Management responses are limited to the increase or decrease of sediment supply and the relocation of levees to allow for upslope migration of eelgrass habitat.


Assuntos
Comportamento Alimentar/fisiologia , Gansos/fisiologia , Zosteraceae/fisiologia , Animais , Demografia , Ecossistema , Monitoramento Ambiental , Aquecimento Global , Modelos Biológicos , Oceano Pacífico , Fatores de Tempo
11.
Am Nat ; 178(5): E110-23, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22030737

RESUMO

We used observations of individually marked female black brant geese (Branta bernicla nigricans; brant) at three wintering lagoons on the Pacific coast of Baja California-Laguna San Ignacio (LSI), Laguna Ojo de Liebre (LOL), and Bahía San Quintín (BSQ)-and the Tutakoke River breeding colony in Alaska to assess hypotheses about carryover effects on breeding and distribution of individuals among wintering areas. We estimated transition probabilities from wintering locations to breeding and nonbreeding by using multistratum robust-design capture-mark-recapture models. We also examined the effect of breeding on migration to wintering areas to assess the hypothesis that individuals in family groups occupied higher-quality wintering locations. We used 4,538 unique female brant in our analysis of the relationship between winter location and breeding probability. All competitive models of breeding probability contained additive effects of wintering location and the 1997-1998 El Niño-Southern Oscillation (ENSO) event on probability of breeding. Probability of breeding in non-ENSO years was 0.98 ± 0.02, 0.68 ± 0.04, and 0.91 ± 0.11 for females wintering at BSQ, LOL, and LSI, respectively. After the 1997-1998 ENSO event, breeding probability was between 2% (BSQ) and 38% (LOL) lower than in other years. Individuals that bred had the highest probability of migrating the next fall to the wintering area producing the highest probability of breeding.


Assuntos
Migração Animal , Ecossistema , Gansos/fisiologia , Reprodução , Comportamento Social , Alaska , Animais , El Niño Oscilação Sul , Feminino , Aptidão Genética , México , Modelos Biológicos , Dinâmica Populacional , Estações do Ano
12.
Ecol Evol ; 11(24): 18514-18530, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003689

RESUMO

Animals exhibit varied life-history traits that reflect adaptive responses to their environments. For Arctic-breeding birds, traits related to diet, egg nutrient allocation, clutch size, and chick growth are predicted to be under increasing selection pressure due to rapid climate change and increasing environmental variability across high-latitude regions. We compared four migratory birds (black brant [Branta bernicla nigricans], lesser snow geese [Chen caerulescens caerulescens], semipalmated sandpipers [Calidris pusilla], and Lapland longspurs [Calcarius lapponicus]) with varied life histories at an Arctic site in Alaska, USA, to understand how life-history traits help moderate environmental variability across different phases of the reproductive cycle. We monitored aspects of reproductive performance related to the timing of breeding, reproductive investment, and chick growth from 2011 to 2018. In response to early snowmelt and warm temperatures, semipalmated sandpipers advanced their site arrival and bred in higher numbers, while brant and snow geese increased clutch sizes; all four species advanced their nest initiation dates. During chick rearing, longspur nestlings were relatively resilient to environmental variation, whereas warmer temperatures increased the growth rates of sandpiper chicks but reduced growth rates of snow goose goslings. These responses generally aligned with traits along the capital-income spectrum of nutrient acquisition and altricial-precocial modes of chick growth. Under a warming climate, the ability to mobilize endogenous reserves likely provides geese with relative flexibility to adjust the timing of breeding and the size of clutches. Higher temperatures, however, may negatively affect the quality of herbaceous foods and slow gosling growth. Species may possess traits that are beneficial during one phase of the reproductive cycle and others that may be detrimental at another phase, uneven responses that may be amplified with future climate warming. These results underscore the need to consider multiple phases of the reproductive cycle when assessing the effects of environmental variability on Arctic-breeding birds.

13.
Science ; 364(6445)2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31196986

RESUMO

Kubelka et al (Reports, 9 November 2018, p. 680) claim that climate change has disrupted patterns of nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially in the Arctic. We describe methodological problems with their analyses and argue that there is no solid statistical support for their claims.


Assuntos
Mudança Climática , Comportamento de Nidação , Animais , Regiões Árticas , Comportamento Predatório
15.
Ecology ; 87(1): 151-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16634306

RESUMO

Climate in low-latitude wintering areas may influence temperate and high-latitude breeding populations of birds, but demonstrations of such relationships have been rare because of difficulties in linking wintering with breeding populations. We used long-term aerial surveys in Mexican wintering areas and breeding areas in Alaska, USA, to assess numbers of Black Brant (Branta bernicla nigricans; hereafter brant) on their principal wintering and breeding area in El Niño and non-El Niño years. We used Pollock's robust design to directly estimate probability of breeding and apparent annual survival of individually marked brant at the Tutakoke River (TR) colony, Alaska, in each year between 1988 and 2001. Fewer brant wintered in Mexico during every El Niño event since 1965. Fewer brant were observed on the principal breeding area following each El Niño since surveys began in 1985. Probability of breeding was negatively related to January sea surface temperature along the subtropical coast of North America during the preceding winter. Between 23% (five-year-olds or older) and 30% (three-year-olds) fewer brant nested in 1998 following the strong El Niño event in the winter of 1997-1998 than in non-El Niño years. This finding is consistent with life history theory, which predicts that longer-lived species preserve adult survival at the expense of reproduction. Oceanographic conditions off Baja California, apparently by their effect on Zostera marina (eelgrass), strongly influence winter distribution of brant geese and their reproduction (but not survival), which in turn affects ecosystem dynamics in Alaska.


Assuntos
Migração Animal/fisiologia , Anseriformes/fisiologia , Reprodução/fisiologia , Tempo (Meteorologia) , Fatores Etários , Alaska , Animais , Ecossistema , Feminino , México , Oceanos e Mares , Dinâmica Populacional , Estações do Ano , Análise de Sobrevida , Temperatura
16.
PLoS One ; 11(4): e0152701, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27104836

RESUMO

Eelgrass (Zostera marina) populations occupying coastal waters of Alaska are separated by a peninsula and island archipelago into two Large Marine Ecosystems (LMEs). From populations in both LMEs, we characterize genetic diversity, population structure, and polarity in gene flow using nuclear microsatellite fragment and chloroplast and nuclear sequence data. An inverse relationship between genetic diversity and latitude was observed (heterozygosity: R2 = 0.738, P < 0.001; allelic richness: R2 = 0.327, P = 0.047), as was significant genetic partitioning across most sampling sites (θ = 0.302, P < 0.0001). Variance in allele frequency was significantly partitioned by region only in cases when a population geographically in the Gulf of Alaska LME (Kinzarof Lagoon) was instead included with populations in the Eastern Bering Sea LME (θp = 0.128-0.172; P < 0.003), suggesting gene flow between the two LMEs in this region. Gene flow among locales was rarely symmetrical, with notable exceptions generally following net coastal ocean current direction. Genetic data failed to support recent proposals that multiple Zostera species (i.e. Z. japonica and Z. angustifolia) are codistributed with Z. marina in Alaska. Comparative analyses also failed to support the hypothesis that eelgrass populations in the North Atlantic derived from eelgrass retained in northeastern Pacific Last Glacial Maximum refugia. These data suggest northeastern Pacific populations are derived from populations expanding northward from temperate populations following climate amelioration at the terminus of the last Pleistocene glaciation.


Assuntos
Variação Genética , Zosteraceae/genética , Alaska , Repetições de Microssatélites/genética , Oceano Pacífico
17.
Mov Ecol ; 4: 12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27134752

RESUMO

BACKGROUND: Geolocators are useful for tracking movements of long-distance migrants, but potential negative effects on birds have not been well studied. We tested for effects of geolocators (0.8-2.0 g total, representing 0.1-3.9 % of mean body mass) on 16 species of migratory shorebirds, including five species with 2-4 subspecies each for a total of 23 study taxa. Study species spanned a range of body sizes (26-1091 g) and eight genera, and were tagged at 23 breeding and eight nonbreeding sites. We compared breeding performance and return rates of birds with geolocators to control groups while controlling for potential confounding variables. RESULTS: We detected negative effects of tags for three small-bodied species. Geolocators reduced annual return rates for two of 23 taxa: by 63 % for semipalmated sandpipers and by 43 % for the arcticola subspecies of dunlin. High resighting effort for geolocator birds could have masked additional negative effects. Geolocators were more likely to negatively affect return rates if the total mass of geolocators and color markers was 2.5-5.8 % of body mass than if tags were 0.3-2.3 % of body mass. Carrying a geolocator reduced nest success by 42 % for semipalmated sandpipers and tripled the probability of partial clutch failure in semipalmated and western sandpipers. Geolocators mounted perpendicular to the leg on a flag had stronger negative effects on nest success than geolocators mounted parallel to the leg on a band. However, parallel-band geolocators were more likely to reduce return rates and cause injuries to the leg. No effects of geolocators were found on breeding movements or changes in body mass. Among-site variation in geolocator effect size was high, suggesting that local factors were important. CONCLUSIONS: Negative effects of geolocators occurred only for three of the smallest species in our dataset, but were substantial when present. Future studies could mitigate impacts of tags by reducing protruding parts and minimizing use of additional markers. Investigators could maximize recovery of tags by strategically deploying geolocators on males, previously marked individuals, and successful breeders, though targeting subsets of a population could bias the resulting migratory movement data in some species.

18.
Rev. biol. trop ; 61(2): 927-935, Jun. 2013. ilus, graf, mapas, tab
Artigo em Espanhol | LILACS | ID: lil-675477

RESUMO

The Black Brant is a common inhabitant of the Western Artic American tundra, which migrates to Southern Pacific coasts during the winter season. Approximately, 31 000 birds (31%) constitute the Mexican population of Brants at Guerrero Negro, Ojo de Liebre, and Exportadora de Sal lagoon complex; nevertheless, there is little information about the distribution patterns and zone usage. At Guerrero Negro Lagoon (GNL), Ojo de Liebre Lagoon (OLL, both natural sites), and at Exportadora de Sal (ESSA, artificial site) we determined by monthly censuses (from November 2006 to April 2007, 08:00-16:00h) and observed: (1) season and site effects on population structure (age groups), and (2) the tide level relationship with the abundance and proportion of feeding birds. Within a total of 150 observation hours and 98 birds, our results showed a general 0.68 proportion of adults, that was higher in winter than in spring. The statistics analysis showed no effects by site on the proportion of feeding birds, but we observed a temporal decrease at ESSA and at GNL. In contrast the proportion of feeding birds at OLL was constant. We observed an increase in the juveniles between winter and spring. This increase is related with the differential migration, which mentions that the juveniles are the last to leave the wintering area. In winter the relations of the tide level with the abundance of Brant were: direct at ESSA, inverse at OLL and no relation found at GNL. In spring, no relation was observed in the sites. The proportion of Brants feeding at OLL (the site with the higher abundance) was independent of the tide level. This is related with two possible behaviors of the geese: (1) they can move through the lagoon and take advantage of the tidal lag, which is up to four hours; and (2) they can modify their feeding strategies, more on floating eelgrass (Zostera marina).


En el complejo lagunar Guerrero Negro-Ojo de Liebre-Exportadora de Sal inverna el 31% de la población de Ganso de collar (Branta bernicla nigricans) que utiliza México (31 000 aves en promedio). Nosotros realizamos censos de punto mensuales (noviembre 2006 a abril 2007) en tres sitios para determinar: (1) los efectos de la época del año y del sitio en la estructura poblacional (grupos de edad) y (2) la relación del nivel de marea con la abundan- cia y la proporción de aves alimentándose. La proporción general de adultos fue de 0.68. Esta proporción fue mayor en invierno que en primavera. Por sitio en LGN y ESSA disminuyó y en LOL se mantuvo constante. El incremento de aves inmaduras entre el invierno y la primavera se relaciona con su partida primaveral tardía. La alimentación del Ganso de collar en LOL (el sitio de mayor abundancia) fue independiente del nivel de marea, lo que se puede relacionar con dos conductas: (1) que las aves se muevan a lo largo de la laguna, para aprovechar el desfase, de hasta cuatro horas en el nivel de marea o (2) que modifiquen sus estrategias de alimentación, para consumir el pasto flotante.


Assuntos
Animais , Migração Animal/fisiologia , Anseriformes/fisiologia , Ecossistema , Comportamento Alimentar/fisiologia , Anseriformes/classificação , México , Densidade Demográfica , Dinâmica Populacional , Estações do Ano
19.
Mol Ecol ; 14(3): 711-22, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15723663

RESUMO

The Baja California peninsula represents a biogeographical boundary contributing to regional differentiation among populations of marine animals. We investigated the genetic characteristics of perennial and annual populations of the marine angiosperm, Zostera marina, along the Pacific coast of Baja California and in the Gulf of California, respectively. Populations of Z. marina from five coastal lagoons along the Pacific coast and four sites in the Gulf of California were studied using nine microsatellite loci. Analyses of variance revealed significant interregional differentiation, but no subregional differentiation. Significant spatial differentiation, assessed using theta(ST) values, was observed among all populations within the two regions. Z. marina populations along the Pacific coast are separated by more than 220 km and had the greatest theta(ST) (0.13-0.28) values, suggesting restricted gene flow. In contrast, lower but still significant genetic differentiation was observed among populations within the Gulf of California (theta(ST) = 0.04-0.18), even though populations are separated by more than 250 km. This suggests higher levels of gene flow among Gulf of California populations relative to Pacific coast populations. Direction of gene flow was predominantly southward among Pacific coast populations, whereas no dominant polarity in the Gulf of California populations was observed. The test for isolation by distance (IBD) showed a significant correlation between genetic and geographical distances in Gulf of California populations, but not in Pacific coast populations, perhaps because of shifts in currents during El Niño Southern Oscillation (ENSO) events along the Pacific coast.


Assuntos
Variação Genética , Genética Populacional , Filogenia , Zosteraceae/genética , Análise de Variância , Análise por Conglomerados , Demografia , Frequência do Gene , Geografia , Repetições de Microssatélites/genética , Oceano Pacífico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA