Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 43(4): 540-546, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36727518

RESUMO

BACKGROUND: Although most plasma FVIII (Factor VIII) circulates in complex with VWF (von Willebrand factor), a minority (3%-5%) circulates as free-FVIII, which is rapidly cleared. Consequently, 20% of total FVIII may be cleared as free-FVIII. Critically, the mechanisms of free-FVIII clearance remain poorly understood. However, recent studies have implicated the MGL (macrophage galactose lectin) in modulating VWF clearance. METHODS: Since VWF and FVIII share similar glycosylation, we investigated the role of MGL in FVIII clearance. FVIII binding to MGL was assessed in immunosorbent and cell-based assays. In vivo, FVIII clearance was assessed in MGL1-/- and VWF-/-/FVIII-/- mice. RESULTS: In vitro-binding studies identified MGL as a novel macrophage receptor that binds free-FVIII in a glycan-dependent manner. MGL1-/- and MGL1-/- mice who received an anti-MGL1/2 blocking antibody both showed significantly increased endogenous FVIII activity compared with wild-type mice (P=0.036 and P<0.0001, respectively). MGL inhibition also prolonged the half-life of infused FVIII in FVIII-/- mice. To assess whether MGL plays a role in the clearance of free FVIII in a VWF-independent manner, in vivo clearance experiments were repeated in dual VWF-/-/FVIII-/- mice. Importantly, the rapid clearance of free FVIII in VWF-/-/FVIII-/- mice was significantly (P=0.012) prolonged in the presence of anti-MGL1/2 antibodies. Finally, endogenous plasma FVIII levels in VWF-/- mice were significantly increased following MGL inhibition (P=0.016). CONCLUSIONS: Cumulatively, these findings demonstrate that MGL plays an important role in regulating macrophage-mediated clearance of both VWF-bound FVIII and free-FVIII in vivo. We propose that this novel FVIII clearance pathway may be of particular clinical importance in patients with type 2N or type 3 Von Willebrand disease.


Assuntos
Hemostáticos , Doenças de von Willebrand , Camundongos , Animais , Fator VIII/genética , Fator VIII/metabolismo , Fator de von Willebrand/metabolismo , Galactose/metabolismo , Lectinas/metabolismo , Macrófagos/metabolismo
2.
Blood ; 136(25): 2864-2874, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-32785650

RESUMO

Numerous studies have reported significant associations between ABO blood group and risk of cardiovascular disease. These studies have consistently demonstrated that thrombotic risk is significantly reduced in individuals in blood group O. Nevertheless, the biological mechanisms through which ABO influences hemostasis have remained poorly understood. Exciting recent data have provided novel insights into how these ABO effects are modulated and have highlighted that ABO group significantly influences platelet plug formation at sites of vascular injury (primary hemostasis). In particular, ABO affects multiple aspects of von Willebrand factor (VWF) biology. In keeping with their reduced thrombotic risk, plasma VWF levels are ∼25% lower in healthy group O compared with healthy group non-O individuals. In addition, blood group O VWF demonstrates enhanced susceptibility to ADAMTS13 proteolysis. Finally, preliminary findings suggest that the interaction of group O VWF with platelets may also be reduced. Although the molecular mechanisms underlying these ABO effects on VWF have not been fully elucidated, it seems likely that they are mediated in large part by the ABO(H) carbohydrate structures that are carried on both the N- and O-linked glycans of VWF. Interestingly, ABO(H) determinants are also expressed on several different platelet surface glycoprotein receptors. Recent studies support the hypothesis that ABO group not only exerts major quantitative and qualitative effects on VWF, but also affect specific aspects of platelet function. Given the severe morbidity and the mortality associated with thrombotic disorders, defining the mechanisms underlying these ABO effects is not only of scientific interest, but also of direct clinical importance.


Assuntos
Sistema ABO de Grupos Sanguíneos/sangue , Plaquetas/metabolismo , Hemostasia , Trombose/metabolismo , Fator de von Willebrand/metabolismo , Proteína ADAMTS13/metabolismo , Plaquetas/patologia , Humanos , Proteólise , Trombose/patologia
3.
Haematologica ; 107(3): 668-679, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33763999

RESUMO

Terminal sialylation determines the plasma half-life of von Willebrand factor (VWF). A role for macrophage galactose lectin (MGL) in regulating hyposialylated VWF clearance has recently been proposed. In this study, we showed that MGL influences physiological plasma VWF clearance. MGL inhibition was associated with a significantly extended mean residence time and 3-fold increase in endogenous plasma VWF antigen levels (P<0.05). Using a series of VWF truncations, we further demonstrated that the A1 domain of VWF is predominantly responsible for enabling the MGL interaction. Binding of both full-length and VWF-A1-A2-A3 to MGL was significantly enhanced in the presence of ristocetin (P<0.05), suggesting that the MGL-binding site in A1 is not fully accessible in globular VWF. Additional studies using different VWF glycoforms demonstrated that VWF O-linked glycans, clustered at either end of the A1 domain, play a key role in protecting VWF against MGLmediated clearance. Reduced sialylation has been associated with pathological, increased clearance of VWF in patients with von Willebrand disease. Herein, we demonstrate that specific loss of α2-3 linked sialylation from O-glycans results in markedly increased MGL-binding in vitro, and markedly enhanced MGL-mediated clearance of VWF in vivo. Our data further show that the asialoglycoprotein receptor (ASGPR) does not have a significant role in mediating the increased clearance of VWF following loss of O-sialylation. Conversely however, we observed that loss of N-linked sialylation from VWF drives enhanced circulatory clearance predominantly via the ASGPR. Collectively, our data support the hypothesis that in addition to regulating physiological VWF clearance, the MGL receptor works in tandem with ASGPR to modulate enhanced clearance of aberrantly sialylated VWF in the pathogenesis of von Willebrand disease.


Assuntos
Galactose , Ácido N-Acetilneuramínico , Fator de von Willebrand , Galactose/metabolismo , Humanos , Lectinas/metabolismo , Macrófagos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Fator de von Willebrand/metabolismo
4.
Br J Haematol ; 192(4): 714-719, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33326604

RESUMO

Endothelial cell (EC) activation plays a key role in the pathogenesis of pulmonary microvascular occlusion, which is a hallmark of severe coronavirus disease 2019 (COVID-19). Consistent with EC activation, increased plasma von Willebrand factor antigen (VWF:Ag) levels have been reported in COVID-19. Importantly however, studies in other microangiopathies have shown that plasma VWF propeptide (VWFpp) is a more sensitive and specific measure of acute EC activation. In the present study, we further investigated the nature of EC activation in severe COVID-19. Markedly increased plasma VWF:Ag [median (interquatile range, IQR) 608·8 (531-830)iu/dl] and pro-coagulant factor VIII (FVIII) levels [median (IQR) 261·9 (170-315) iu/dl] were seen in patients with severe severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Sequential testing showed that these elevated VWF-FVIII complex levels remained high for up to 3 weeks. Similarly, plasma VWFpp levels were also markedly elevated [median (IQR) 324·6 (267-524) iu/dl]. Interestingly however, the VWFpp/VWF:Ag ratio was reduced, demonstrating that decreased VWF clearance contributes to the elevated plasma VWF:Ag levels in severe COVID-19. Importantly, plasma VWFpp levels also correlated with clinical severity indices including the Sequential Organ Failure Assessment (SOFA) score, Sepsis-Induced Coagulopathy (SIC) score and the ratio of arterial oxygen partial pressure to fractional inspired oxygen (P/F ratio). Collectively, these findings support the hypothesis that sustained fulminant EC activation is occurring in severe COVID-19, and further suggest that VWFpp may have a role as a biomarker in this setting.


Assuntos
COVID-19/sangue , Células Endoteliais/metabolismo , Precursores de Proteínas/sangue , SARS-CoV-2/metabolismo , Fator de von Willebrand/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Células Endoteliais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
5.
Blood ; 131(8): 911-916, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29282218

RESUMO

Previous studies have shown that loss of terminal sialic acid causes enhanced von Willebrand factor (VWF) clearance through the Ashwell-Morrell receptor (AMR). In this study, we investigated (1) the specific importance of N- vs O-linked sialic acid in protecting against VWF clearance and (2) whether additional receptors contribute to the reduced half-life of hyposialylated VWF. α2-3-linked sialic acid accounts for <20% of total sialic acid and is predominantly expressed on VWF O-glycans. Nevertheless, specific digestion with α2-3 neuraminidase (α2-3Neu-VWF) was sufficient to cause markedly enhanced VWF clearance. Interestingly, in vivo clearance experiments in dual VWF-/-/Asgr1-/- mice demonstrated enhanced clearance of α2-3Neu-VWF even in the absence of the AMR. The macrophage galactose-type lectin (MGL) is a C-type lectin that binds to glycoproteins expressing terminal N-acetylgalactosamine or galactose residues. Importantly, the markedly enhanced clearance of hyposialylated VWF in VWF-/-/Asgr1-/- mice was significantly attenuated in the presence of an anti-MGL inhibitory antibody. Furthermore, dose-dependent binding of human VWF to purified recombinant human MGL was confirmed using surface plasmon resonance. Additionally, plasma VWF:Ag levels were significantly elevated in MGL1-/- mice compared with controls. Collectively, these findings identify MGL as a novel macrophage receptor for VWF that significantly contributes to the clearance of both wild-type and hyposialylated VWF.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Assialoglicoproteínas/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Fator de von Willebrand/fisiologia , Animais , Receptor de Asialoglicoproteína/genética , Assialoglicoproteínas/genética , Células Cultivadas , Humanos , Lectinas Tipo C/genética , Macrófagos/citologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido N-Acetilneuramínico/química
6.
Arterioscler Thromb Vasc Biol ; 37(5): 845-855, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28279966

RESUMO

OBJECTIVE: Previous studies have demonstrated a role for plasmin in regulating plasma von Willebrand factor (VWF) multimer composition. Moreover, emerging data have shown that plasmin-induced cleavage of VWF is of particular importance in specific pathological states. Interestingly, plasmin has been successfully used as an alternative to ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif) in a mouse model of thrombotic thrombocytopenic purpura. Consequently, elucidating the molecular mechanisms through which plasmin binds and cleaves VWF is not only of basic scientific interest but also of direct clinical importance. Our aim was to investigate factors that modulate the susceptibility of human VWF to proteolysis by plasmin. APPROACH AND RESULTS: We have adapted the VWF vortex proteolysis assay to allow for time-dependent shear exposure studies. We show that globular VWF is resistant to plasmin cleavage under static conditions, but is readily cleaved by plasmin under shear. Although both plasmin and ADAMTS13 cleave VWF in a shear-dependent manner, plasmin does not cleave at the Tyr1605-Met1606 ADAMTS13 proteolytic site in the A2 domain. Rather under shear stress conditions, or in the presence of denaturants, such as urea or ristocetin, plasmin cleaves the K1491-R1492 peptide bond within the VWF A1-A2 linker region. Finally, we demonstrate that VWF susceptibility to plasmin proteolysis at K1491-R1492 is modulated by local N-linked glycan expression within A1A2A3, and specifically inhibited by heparin binding to the A1 domain. CONCLUSIONS: Improved understanding of the plasmin-VWF interaction offers exciting opportunities to develop novel adjunctive therapies for the treatment of refractory thrombotic thrombocytopenic purpura.


Assuntos
Fibrinolisina/metabolismo , Polissacarídeos/metabolismo , Fator de von Willebrand/metabolismo , Sítios de Ligação , Fibrinolisina/química , Heparina/metabolismo , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Estresse Mecânico , Relação Estrutura-Atividade , Fatores de Tempo , Fator de von Willebrand/química
7.
Res Pract Thromb Haemost ; 7(2): 100085, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36817284

RESUMO

Background: Severe COVID-19 is associated with marked endothelial cell (EC) activation that plays a key role in immunothrombosis and pulmonary microvascular occlusion. However, the biological mechanisms through which SARS-CoV-2 causes EC activation and damage remain poorly defined. Objectives: We investigated EC activation in patients with acute COVID-19, and specifically focused on how proteins stored within Weibel-Palade bodies may impact key aspects of disease pathogenesis. Methods: Thirty-nine patients with confirmed COVID-19 were recruited. Weibel-Palade body biomarkers (von Willebrand factor [VWF], angiopoietin-2 [Angpt-2], and osteoprotegerin) and soluble thrombomodulin (sTM) levels were determined. In addition, EC activation and angiogenesis were assessed in the presence or absence of COVID-19 plasma incubation. Results: Markedly elevated plasma VWF antigen, Angpt-2, osteoprotegerin, and sTM levels were observed in patients with acute COVID-19. The increased levels of both sTM and Weibel-Palade body components (VWF, osteoprotegerin, and Angpt-2) correlated with COVID-19 severity. Incubation of COVID-19 plasma with ECs triggered enhanced VWF secretion and increased Angpt-2 expression, as well as significantly enhanced in vitro EC tube formation and angiogenesis. Conclusion: We propose that acute SARS-CoV-2 infection leads to a complex and multifactorial EC activation, progressive loss of thrombomodulin, and increased Angpt-2 expression, which collectively serve to promote a local proangiogenic state.

8.
J Thromb Haemost ; 20(10): 2429-2438, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35875995

RESUMO

BACKGROUND: Prolonged recovery is common after acute SARS-CoV-2 infection; however, the pathophysiological mechanisms underpinning Long COVID syndrome remain unknown. VWF/ADAMTS-13 imbalance, dysregulated angiogenesis, and immunothrombosis are hallmarks of acute COVID-19. We hypothesized that VWF/ADAMTS-13 imbalance persists in convalescence together with endothelial cell (EC) activation and angiogenic disturbance. Additionally, we postulate that ongoing immune cell dysfunction may be linked to sustained EC and coagulation activation. PATIENTS AND METHODS: Fifty patients were reviewed at a minimum of 6 weeks following acute COVID-19. ADAMTS-13, Weibel Palade Body (WPB) proteins, and angiogenesis-related proteins were assessed and clinical evaluation and immunophenotyping performed. Comparisons were made with healthy controls (n = 20) and acute COVID-19 patients (n = 36). RESULTS: ADAMTS-13 levels were reduced (p = 0.009) and the VWF-ADAMTS-13 ratio was increased in convalescence (p = 0.0004). Levels of platelet factor 4 (PF4), a putative protector of VWF, were also elevated (p = 0.0001). A non-significant increase in WPB proteins Angiopoietin-2 (Ang-2) and Osteoprotegerin (OPG) was observed in convalescent patients and WPB markers correlated with EC parameters. Enhanced expression of 21 angiogenesis-related proteins was observed in convalescent COVID-19. Finally, immunophenotyping revealed significantly elevated intermediate monocytes and activated CD4+ and CD8+ T cells in convalescence, which correlated with thrombin generation and endotheliopathy markers, respectively. CONCLUSION: Our data provide insights into sustained EC activation, dysregulated angiogenesis, and VWF/ADAMTS-13 axis imbalance in convalescent COVID-19. In keeping with the pivotal role of immunothrombosis in acute COVID-19, our findings support the hypothesis that abnormal T cell and monocyte populations may be important in the context of persistent EC activation and hemostatic dysfunction during convalescence.


Assuntos
COVID-19 , Hemostáticos , Proteína ADAMTS13 , Angiopoietina-2 , COVID-19/complicações , Convalescença , Humanos , Neovascularização Patológica , Osteoprotegerina , Fator Plaquetário 4 , SARS-CoV-2 , Trombina , Fator de von Willebrand/metabolismo , Síndrome de COVID-19 Pós-Aguda
9.
J Thromb Haemost ; 19(8): 1914-1921, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34053187

RESUMO

BACKGROUND: Consistent with fulminant endothelial cell activation, elevated plasma von Willebrand factor (VWF) antigen levels have been reported in patients with COVID-19. The multimeric size and function of VWF are normally regulated through A Disintegrin And Metalloprotease with ThrombSpondin Motif type 1 motif, member 13 (ADAMTS-13)--mediated proteolysis. OBJECTIVES: This study investigated the hypothesis that ADAMTS-13 regulation of VWF multimer distribution may be impaired in severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection contributing to the observed microvascular thrombosis. PATIENTS AND METHODS: Patients with COVID-19 (n = 23) were recruited from the Beaumont Hospital Intensive Care Unit (ICU) in Dublin. Plasma VWF antigen, multimer distribution, ADAMTS-13 activity, and known inhibitors thereof were assessed. RESULTS: We observed markedly increased VWF collagen-binding activity in patients with severe COVID-19 compared to controls (median 509.1 versus 94.3 IU/dl). Conversely, plasma ADAMTS-13 activity was significantly reduced (median 68.2 IU/dl). In keeping with an increase in VWF:ADAMTS-13 ratio, abnormalities in VWF multimer distribution were common in patients with COVID-19, with reductions in high molecular weight VWF multimers. Terminal sialylation regulates VWF susceptibility to proteolysis by ADAMTS-13 and other proteases. We observed that both N- and O-linked sialylation were altered in severe COVID-19. Furthermore, plasma levels of the ADAMTS-13 inhibitors interleukin-6, thrombospondin-1, and platelet factor 4 were significantly elevated. CONCLUSIONS: These findings support the hypothesis that SARS-CoV-2 is associated with profound quantitative and qualitative increases in plasma VWF levels, and a multifactorial down-regulation in ADAMTS-13 function. Further studies will be required to determine whether therapeutic interventions to correct ADAMTS-13-VWF multimer dysfunction may be useful in COVID-microvascular thrombosis and angiopathy.


Assuntos
COVID-19 , Fator de von Willebrand , Proteína ADAMTS13 , Humanos , SARS-CoV-2 , Trombospondina 1
10.
J Thromb Haemost ; 19(4): 1064-1070, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33587810

RESUMO

BACKGROUND: Persistent fatigue, breathlessness, and reduced exercise tolerance have been reported following acute COVID-19 infection. Although immuno-thrombosis has been implicated in acute COVID-19 pathogenesis, the biological mechanisms underpinning long COVID remain unknown. We hypothesized that pulmonary microvascular immuno-thrombosis may be important in this context. METHODS: One hundred fifty COVID-19 patients were reviewed at St James's Hospital Dublin between May and September 2020 at a median of 80.5 (range 44-155) days after initial diagnosis. These included patients hospitalized during initial illness (n = 69) and others managed entirely as out-patients (n = 81). Clinical examination, chest x-ray, and 6-min walk tests were performed. In addition, a range of coagulation and inflammatory markers were assessed. RESULTS: Increased D-dimer levels (>500 ng/ml) were observed in 25.3% patients up to 4 months post-SARS-CoV-2 infection. On univariate analysis, elevated convalescent D-dimers were more common in COVID-19 patients who had required hospital admission and in patients aged more than 50 years (p < .001). Interestingly, we observed that 29% (n = 11) of patients with elevated convalescent D-dimers had been managed exclusively as out-patients during their illness. In contrast, other coagulation (prothrombin time, activated partial thromboplastin time, fibrinogen, platelet count) and inflammation (C-reactive protein, interleukin-6, and sCD25) markers had returned to normal in >90% of convalescent patients. CONCLUSIONS: Elucidating the biological mechanisms responsible for sustained D-dimer increases may be of relevance in long COVID pathogenesis and has implications for clinical management of these patients.


Assuntos
Reação de Fase Aguda , COVID-19/sangue , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Idoso , COVID-19/reabilitação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2
11.
J Thromb Haemost ; 19(10): 2546-2553, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375505

RESUMO

BACKGROUND: Persistent symptoms including breathlessness, fatigue, and decreased exercise tolerance have been reported in patients after acute SARS-CoV-2 infection. The biological mechanisms underlying this "long COVID" syndrome remain unknown. However, autopsy studies have highlighted the key roles played by pulmonary endotheliopathy and microvascular immunothrombosis in acute COVID-19. OBJECTIVES: To assess whether endothelial cell activation may be sustained in convalescent COVID-19 patients and contribute to long COVID pathogenesis. PATIENTS AND METHODS: Fifty patients were reviewed at a median of 68 days following SARS-CoV-2 infection. In addition to clinical workup, acute phase markers, endothelial cell (EC) activation and NETosis parameters and thrombin generation were assessed. RESULTS: Thrombin generation assays revealed significantly shorter lag times (p < .0001, 95% CI -2.57 to -1.02 min), increased endogenous thrombin potential (p = .04, 95% CI 15-416 nM/min), and peak thrombin (p < .0001, 95% CI 39-93 nM) in convalescent COVID-19 patients. These prothrombotic changes were independent of ongoing acute phase response or active NETosis. Importantly, EC biomarkers including von Willebrand factor antigen (VWF:Ag), VWF propeptide (VWFpp), and factor VIII were significantly elevated in convalescent COVID-19 compared with controls (p = .004, 95% CI 0.09-0.57 IU/ml; p = .009, 95% CI 0.06-0.5 IU/ml; p = .04, 95% CI 0.03-0.44 IU/ml, respectively). In addition, plasma soluble thrombomodulin levels were significantly elevated in convalescent COVID-19 (p = .02, 95% CI 0.01-2.7 ng/ml). Sustained endotheliopathy was more frequent in older, comorbid patients, and those requiring hospitalization. Finally, both plasma VWF:Ag and VWFpp levels correlated inversely with 6-min walk tests. CONCLUSIONS: Collectively, our findings demonstrate that sustained endotheliopathy is common in convalescent COVID-19 and raise the intriguing possibility that this may contribute to long COVID pathogenesis.


Assuntos
COVID-19 , Idoso , Biomarcadores , COVID-19/complicações , Humanos , SARS-CoV-2 , Fator de von Willebrand , Síndrome de COVID-19 Pós-Aguda
12.
Sci Rep ; 10(1): 18366, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110150

RESUMO

ABO blood group is associated with cardiovascular disease, with significantly lower risk in blood group O individuals. ABO(H) blood group determinants are expressed on different glycoproteins on platelet surfaces. In addition, ABO(H) structures are also present on VWF glycans. These ABO(H) carbohydrates influence both platelet and VWF function. Previous studies have reported that approximately 5-10% of normal blood donors express abnormally high or low levels of A or B blood group antigens on their platelet surfaces (high expresser phenotype, HXP or low expresser phenotype, LXP respectively). In this study, the biological effects of the ABO Expresser phenotype were investigated. ABO(H) expression on platelets and plasma VWF was studied in a series of 541 healthy blood donors. Overall, 5.6% of our study cohort were classified as HXP, whilst 4.4% satisfied criteria for LXP. We demonstrate that genotype at the ABO blood group locus plays a critical role in modulating the platelet HXP phenotype. In particular, A1A1 genotype is a major determinant of ABO high-expresser trait. Our data further show that ABH loading on VWF is also affected by ABO expresser phenotype. Consequently, A antigen expression on VWF was significantly elevated in HXP individuals and moderately reduced in LXP subjects (P < 0.05). Collectively, these findings suggest that ABO expresser phenotype influences primary hemostasis though several different pathways. Further studies will be required to define whether inter-individual variations in ABO(H) expression on platelets and/or VWF (particularly HXP and LXP) impact upon risk for cardiovascular disease.


Assuntos
Sistema ABO de Grupos Sanguíneos/metabolismo , Plaquetas/metabolismo , Fenótipo , Fator de von Willebrand/metabolismo , Sistema ABO de Grupos Sanguíneos/genética , Sistema ABO de Grupos Sanguíneos/imunologia , Alelos , Doadores de Sangue , Estudos de Coortes , Genótipo , Hemostasia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA