RESUMO
The hypoxia-inducible factor 1-α (HIF-1α) enables cells to adapt and respond to hypoxia (Hx), and the activity of this transcription factor is regulated by several oncogenic signals and cellular stressors. While the pathways controlling normoxic degradation of HIF-1α are well understood, the mechanisms supporting the sustained stabilization and activity of HIF-1α under Hx are less clear. We report that ABL kinase activity protects HIF-1α from proteasomal degradation during Hx. Using a fluorescence-activated cell sorting (FACS)-based CRISPR/Cas9 screen, we identified HIF-1α as a substrate of the cleavage and polyadenylation specificity factor-1 (CPSF1), an E3-ligase which targets HIF-1α for degradation in the presence of an ABL kinase inhibitor in Hx. We show that ABL kinases phosphorylate and interact with CUL4A, a cullin ring ligase adaptor, and compete with CPSF1 for CUL4A binding, leading to increased HIF-1α protein levels. Further, we identified the MYC proto-oncogene protein as a second CPSF1 substrate and show that active ABL kinase protects MYC from CPSF1-mediated degradation. These studies uncover a role for CPSF1 in cancer pathobiology as an E3-ligase antagonizing the expression of the oncogenic transcription factors, HIF-1α and MYC.
Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Humanos , Proteínas Culina/metabolismo , Hipóxia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Genes abl , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/metabolismoRESUMO
The article Pharmacokinetic and pharmacodynamic analysis of fulvestrant in preclinical models of breast cancer to assess the importance of its estrogen receptor-α degrader activity in antitumor efficacy, written by Suzanne E. Wardell, Alexander P. Yllanes, Christina A. Chao, Yeeun Bae, Kaitlyn J. Andreano, Taylor K. Desautels, Kendall A. Heetderks, Jeremy T. Blitzer, John D. Norris, Donald P. McDonnell, was originally published electronically on the publisher's internet portal on September 27, 2019 without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed on November 16, 2019 to © The Author(s) 2019 and the article is forthwith distributed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The original article has been corrected.
RESUMO
PURPOSE: Fulvestrant is a selective estrogen receptor downregulator (SERD) that is approved for first- or second-line use as a single agent or in combination with cyclin dependent kinase or phosphatidylinositol 3-kinase inhibitors for the treatment of metastatic breast cancer. Fulvestrant exhibits exceptionally effective antitumor activity in preclinical models of breast cancer, a success that has been attributed to its robust SERD activity despite modest receptor downregulation in patient tumors. By modeling human exposures in animal models we probe the absolute need for SERD activity. METHODS: Three xenograft models of endocrine therapy-resistant breast cancer were used to evaluate the efficacy of fulvestrant administered in doses historically used in preclinical studies in the field or by using a dose regimen intended to model clinical exposure levels. Pharmacokinetic and pharmacodynamic analyses were conducted to evaluate plasma exposure and intratumoral ER downregulation. RESULTS: A clinically relevant 25 mg/kg dose of fulvestrant exhibited antitumor efficacy comparable to the historically used 200 mg/kg dose, but at this lower dose it did not result in robust ER downregulation. Further, the antitumor efficacy of the lower dose of fulvestrant was comparable to that observed for other oral SERDs currently in development. CONCLUSION: The use of clinically unachievable exposure levels of fulvestrant as a benchmark in preclinical development of SERDs may negatively impact the selection of those molecules that are advanced for clinical development. Further, these studies suggest that antagonist efficacy, as opposed to SERD activity, is likely to be the primary driver of clinical response.
Assuntos
Antineoplásicos Hormonais/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Antagonistas do Receptor de Estrogênio/farmacocinética , Fulvestranto/farmacocinética , Administração Oral , Animais , Antineoplásicos Hormonais/administração & dosagem , Relação Dose-Resposta a Droga , Antagonistas do Receptor de Estrogênio/administração & dosagem , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Fulvestranto/administração & dosagem , Camundongos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
PURPOSE: The combination of targeting the CDK4/6 and estrogen receptor (ER) signaling pathways with palbociclib and fulvestrant is a proven therapeutic strategy for the treatment of ER-positive breast cancer. However, the poor physicochemical properties of fulvestrant require monthly intramuscular injections to patients, which limit the pharmacokinetic and pharmacodynamic activity of the compound. Therefore, an orally available compound that more rapidly reaches steady state may lead to a better clinical response in patients. Here, we report the identification of G1T48, a novel orally bioavailable, non-steroidal small molecule antagonist of ER. METHODS: The pharmacological effects and the antineoplastic mechanism of action of G1T48 on tumors was evaluated using human breast cancer cells (in vitro) and xenograft efficacy models (in vivo). RESULTS: G1T48 is a potent and efficacious inhibitor of estrogen-mediated transcription and proliferation in ER-positive breast cancer cells, similar to the pure antiestrogen fulvestrant. In addition, G1T48 can effectively suppress ER activity in multiple models of endocrine therapy resistance including those harboring ER mutations and growth factor activation. In vivo, G1T48 has robust antitumor activity in a model of estrogen-dependent breast cancer (MCF7) and significantly inhibited the growth of tamoxifen-resistant (TamR), long-term estrogen-deprived (LTED) and patient-derived xenograft tumors with an increased response being observed with the combination of G1T48 and the CDK4/6 inhibitor lerociclib. CONCLUSIONS: These data show that G1T48 has the potential to be an efficacious oral antineoplastic agent in ER-positive breast cancer.
Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Anticorpos Anti-HIV/farmacologia , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Antagonistas de Estrogênios/farmacologia , Feminino , Humanos , Camundongos , Neoplasias Hormônio-Dependentes/metabolismo , Neoplasias Hormônio-Dependentes/patologia , Inibidores de Proteínas Quinases/farmacologia , Receptores de Estrogênio/metabolismo , Tamoxifeno/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Whereas the androgen receptor (AR) signaling axis remains a therapeutic target in castration-resistant prostate cancer (CRPC), the emergence of AR mutations and splice variants as mechanisms underlying resistance to contemporary inhibitors of this pathway highlights the need for new therapeutic approaches to target this disease. Of significance in this regard is the considerable preclinical data, indicating that histone deacetylase (HDAC) inhibitors may have utility in the treatment of CRPC. However, the results of clinical studies using HDAC inhibitors (directed against HDAC1, 2, 3, and 8) in CRPC are equivocal, a result that some have attributed to their ability to induce an epithelial to mesenchymal transition (EMT) and neuroendocrine differentiation. We posited that it might be possible to uncouple the beneficial effects of HDAC inhibitors on AR signaling from their undesired activities by targeting specific HDACs as opposed to using the pan-inhibitor strategy that has been employed to date. METHODS: The relative abilities of pan- and selective-Class I HDAC inhibitors to attenuate AR-mediated target gene expression and proliferation were assessed in several prostate cancer cell lines. Small interfering RNA (siRNA)-mediated knockdown approaches were used to confirm the importance of of HDAC 1, 2, and 3 expression in these processes. Further, the ability of each HDAC inhibitor to induce the expression of EMT markers (RNA and protein) and EMT-like phenotype(s) (migration) were also assessed. The anti-tumor efficacy of a HDAC3-selective inhibitor, RGFP966, was compared to the pan-HDAC inhibitor Suberoylanilide Hydroxamic Acid (SAHA) in the 22Rv1 xenograft model. RESULTS: Using genetic and pharmacological approaches we demonstrated that a useful inhibition of AR transcriptional activity, absent the induction of EMT, could be achieved by specifically inhibiting HDAC3. Significantly, we also determined that HDAC3 inhibitors blocked the activity of the constitutively active AR V7-splice variant and inhibited the growth of xenograft tumors expressing this protein. CONCLUSIONS: Our studies provide strong rationale for the near-term development of specific HDAC3 inhibitors for the treatment of CRPC.
Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/metabolismo , Acrilamidas/farmacologia , Animais , Western Blotting , Linhagem Celular Tumoral , Ensaios de Migração Celular , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Fenilenodiaminas/farmacologia , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Androgênicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Vorinostat/farmacologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Clinical resistance to the second-generation antiandrogen enzalutamide in castration-resistant prostate cancer (CRPC), despite persistent androgen receptor (AR) activity in tumors, highlights an unmet medical need for next-generation antagonists. We have identified and characterized tetra-aryl cyclobutanes (CBs) as a new class of competitive AR antagonists that exhibit a unique mechanism of action. These CBs are structurally distinct from current antiandrogens (hydroxyflutamide, bicalutamide, and enzalutamide) and inhibit AR-mediated gene expression, cell proliferation, and tumor growth in several models of CRPC. Conformational profiling revealed that CBs stabilize an AR conformation resembling an unliganded receptor. Using a variety of techniques, it was determined that the AR-CB complex was not recruited to AR-regulated promoters and, like apo AR, remains sequestered in the cytoplasm, bound to heat shock proteins. Thus, we have identified third-generation AR antagonists whose unique mechanism of action suggests that they may have therapeutic potential in CRPC.
Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/patologia , Relação Estrutura-AtividadeRESUMO
Estrogens regulate eosinophilia in asthma and other inflammatory diseases. Further, peripheral eosinophilia and tumor-associated tissue eosinophilia (TATE) predicts a better response to immune checkpoint blockade (ICB) in breast cancer. However, how and if estrogens affect eosinophil biology in tumors and how this influences ICB efficacy has not been determined. Here, we report that estrogens decrease the number of peripheral eosinophils and TATE, and this contributes to increased tumor growth in validated murine models of breast cancer and melanoma. Moreover, estrogen signaling in healthy female mice also suppressed peripheral eosinophil prevalence by decreasing the proliferation and survival of maturing eosinophils. Inhibiting estrogen receptor (ER) signaling decreased tumor growth in an eosinophil-dependent manner. Further, the efficacy of ICBs was increased when administered in combination with anti-estrogens. These findings highlight the importance of ER signaling as a regulator of eosinophil biology and TATE and highlight the potential near-term clinical application of ER modulators to increase ICB efficacy in multiple tumor types.
Assuntos
Neoplasias da Mama , Eosinofilia , Eosinófilos , Estrogênios , Receptores de Estrogênio , Transdução de Sinais , Animais , Feminino , Estrogênios/metabolismo , Estrogênios/farmacologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Eosinófilos/metabolismo , Eosinofilia/metabolismo , Eosinofilia/patologia , Humanos , Receptores de Estrogênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Modelos Animais de DoençasRESUMO
Most prostate cancers express the androgen receptor (AR), and tumor growth and progression are facilitated by exceptionally low levels of systemic or intratumorally produced androgens. Thus, absolute inhibition of the androgen signaling axis remains the goal of current therapeutic approaches to treat prostate cancer (PCa). Paradoxically, high dose androgens also exhibit considerable efficacy as a treatment modality in patients with late-stage metastatic PCa. Here we show that low levels of androgens, functioning through an AR monomer, facilitate a non-genomic activation of the mTOR signaling pathway to drive proliferation. Conversely, high dose androgens facilitate the formation of AR dimers/oligomers to suppress c-MYC expression, inhibit proliferation and drive a transcriptional program associated with a differentiated phenotype. These findings highlight the inherent liabilities in current approaches used to inhibit AR action in PCa and are instructive as to strategies that can be used to develop new therapeutics for this disease and other androgenopathies.
Assuntos
Androgênios , Proliferação de Células , Neoplasias da Próstata , Receptores Androgênicos , Transdução de Sinais , Serina-Treonina Quinases TOR , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Androgênios/metabolismo , Androgênios/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Multimerização Proteica/efeitos dos fármacos , AnimaisRESUMO
Despite advances in surgery and targeted therapies, the prognosis for women with high-grade serous ovarian cancer remains poor. Moreover, unlike other cancers, immunotherapy has minimally impacted outcomes in patients with ovarian cancer. Progress in this regard has been hindered by the lack of relevant syngeneic ovarian cancer models to study tumor immunity and evaluate immunotherapies. To address this problem, we developed a luciferase labeled murine model of high-grade serous ovarian cancer, STOSE.M1 luc. We defined its growth characteristics, immune cell repertoire, and response to anti PD-L1 immunotherapy. As with human ovarian cancer, we demonstrated that this model is poorly sensitive to immune checkpoint modulators. By developing the STOSE.M1 luc model, it will be possible to probe the mechanisms underlying resistance to immunotherapies and evaluate new therapeutic approaches to treat ovarian cancer.
RESUMO
Nearly 80% of all breast cancers are estrogen receptor positive (ER+) and require the activity of this transcription factor for tumor growth and survival. Thus, endocrine therapies, which target the estrogen signaling axis, have and will continue to be the cornerstone of therapy for patients diagnosed with ER+ disease. Several inhibitors of ER activity exist, including aromatase inhibitors (AIs), selective estrogen receptor modulators (SERMs), selective estrogen receptor degraders/down-regulators (SERDs), and ER proteolysis-targeting chimeras (ER PROTACs); drugs which differ in the mechanism(s) by which they inhibit this signaling pathway. Notwithstanding their significant impact on the management of this disease, resistance to existing endocrine therapies remains a major impediment to durable clinical responses. Although the mechanisms of resistance are complex and varied, dependence on ER is typically retained after progression on SERMs and AIs, suggesting that ER remains a bona fide therapeutic target. The discovery and development of orally bioavailable drugs that eliminate ER expression (SERDs and ER PROTACs) will likely aid in treating this growing patient population. All of the existing endocrine therapies were developed with the intent of inhibiting the cancer cell intrinsic actions of ER and/or with the objective of achieving extreme estrogen deprivation and most achieve that goal. A longstanding question that remains to be addressed, however, is how actions of existing interventions extrinsic to the cancer cells influence tumor biology. We believe that these issues need to be addressed in the development of strategies to develop the next generation of ER-modulators optimized for positive activities in both cancer cells and other cells within the tumor microenvironment (TME).
Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Humanos , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Transdução de Sinais , Microambiente TumoralRESUMO
We previously described the development of a DNA-alkylating compound that showed selective toxicity in breast cancer cells. This compound contained an estrogen receptor α (ERα)-binding ligand and a DNA-binding/methylating component that could selectively methylate the N3-position of adenines at adenine-thymine rich regions of DNA. Herein, we describe mechanistic investigations that demonstrate that this class of compounds facilitate the translocation of the ERα-compound complex to the nucleus and induce the expression of ERα target genes. We confirm that the compounds show selective toxicity in ERα-expressing cells, induce ERα localization in the nucleus, and verify the essential role of ERα in modulating the toxicity. Minor alterations in the compound structure significantly affects the DNA binding ability, which correlates to the DNA-methylating ability. These studies demonstrate the utility of DNA-alkylating compounds to accomplish targeted inhibition of the growth of specific cancer cells; an approach that may overcome shortcomings of currently used chemotherapy agents.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Metilação de DNA , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Estradiol/administração & dosagem , Estradiol/farmacologia , Feminino , Humanos , Células MCF-7 , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Immune checkpoint blockade (ICB) therapies have significantly prolonged patient survival across multiple tumor types, particularly in melanoma. Interestingly, sex-specific differences in response to ICB have been observed, with males receiving a greater benefit from ICB than females, although the mechanism or mechanisms underlying this difference are unknown. Mining published transcriptomic data sets, we determined that the response to ICBs is influenced by the functionality of intratumoral macrophages. This puts into context our observation that estrogens (E2) working through the estrogen receptor α (ERα) stimulated melanoma growth in murine models by skewing macrophage polarization toward an immune-suppressive state that promoted CD8+ T cell dysfunction and exhaustion and ICB resistance. This activity was not evident in mice harboring macrophage-specific depletion of ERα, confirming a direct role for estrogen signaling within myeloid cells in establishing an immunosuppressed state. Inhibition of ERα using fulvestrant, a selective estrogen receptor downregulator (SERD), decreased tumor growth, stimulated adaptive immunity, and increased the antitumor efficacy of ICBs. Further, a gene signature that determines ER activity in macrophages predicted survival in patients with melanoma treated with ICB. These results highlight the importance of E2/ER signaling as a regulator of intratumoral macrophage polarization, an activity that can be therapeutically targeted to reverse immune suppression and increase ICB efficacy.
Assuntos
Estrogênios/metabolismo , Melanoma/imunologia , Células Mieloides/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/imunologia , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Feminino , Fulvestranto/farmacologia , Humanos , Sistema Imunitário , Macrófagos/metabolismo , Melanoma/metabolismo , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , RNA Citoplasmático Pequeno/metabolismo , Receptores de Estrogênio , Neoplasias Cutâneas/metabolismoRESUMO
Management of breast cancer in limited-resource settings is hindered by a lack of low-cost, logistically sustainable approaches toward molecular and cellular diagnostic pathology services that are needed to guide therapy. To address these limitations, we have developed a multimodal cellphone-based platform-the EpiView-D4-that can evaluate both cellular morphology and molecular expression of clinically relevant biomarkers directly from fine-needle aspiration (FNA) of breast tissue specimens within 1 h. The EpiView-D4 is comprised of two components: (1) an immunodiagnostic chip built upon a "non-fouling" polymer brush-coating (the "D4") which quantifies expression of protein biomarkers directly from crude cell lysates, and (2) a custom cellphone-based optical microscope ("EpiView") designed for imaging cytology preparations and D4 assay readout. As a proof-of-concept, we used the EpiView-D4 for assessment of human epidermal growth factor receptor-2 (HER2) expression and validated the performance using cancer cell lines, animal models, and human tissue specimens. We found that FNA cytology specimens (prepared in less than 5 min with rapid staining kits) imaged by the EpiView-D4 were adequate for assessment of lesional cellularity and tumor content. We also found our device could reliably distinguish between HER2 expression levels across multiple different cell lines and animal xenografts. In a pilot study with human tissue (n = 19), we were able to accurately categorize HER2-negative and HER2-positve tumors from FNA specimens. Taken together, the EpiView-D4 offers a promising alternative to invasive-and often unavailable-pathology services and may enable the democratization of effective breast cancer management in limited-resource settings.
RESUMO
The therapeutic efficacy of histone deacetylase inhibitors (HDACI) is generally attributed to their ability to alter gene expression secondary to their effects on the acetylation status of transcription factors and histones. However, because HDACIs exhibit similar transcriptional effects in most cells, the molecular basis for their therapeutic selectivity toward malignant cells is largely unknown. In this study, we report that HDACI, of distinct chemotypes, quantitatively inhibit glucose transporter 1 (GLUT1)-mediated glucose transport into multiple myeloma cells through both down-regulation of GLUT1 and inhibition of hexokinase 1 (HXK1) enzymatic activity. Unexpectedly, however, this inhibition of glucose utilization is accompanied by an increase in amino acid catabolism with no increase in fatty acid oxidation. Our findings suggest that an HDACI-induced change in carbon source preference could contribute to the therapeutic efficacy of these drugs by creating a pattern of fuel utilization that is incompatible with rapid tumor growth and survival. Furthermore, these results, which implicate glucose metabolism as a target of HDACI, suggest that caution should be exercised in attributing effects of this class of drug to primary alterations in gene transcription.
Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glucose/metabolismo , Inibidores de Histona Desacetilases , Acetilcoenzima A/metabolismo , Aminoácidos/metabolismo , Apoptose/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/metabolismo , Hexoquinase/antagonistas & inibidores , Hexoquinase/metabolismo , Humanos , Modelos Biológicos , Mieloma Múltiplo/metabolismo , Oxirredução/efeitos dos fármacos , Células Tumorais CultivadasRESUMO
The estrogen receptor (ER/ESR1) is expressed in a majority of breast cancers and drugs that inhibit ER signaling are the cornerstone of breast cancer pharmacotherapy. Currently, aromatase inhibitors are the frontline endocrine interventions of choice although their durability in metastatic disease is limited by activating point mutations within the ligand-binding domain of ESR1 that permit ligand-independent activation of the receptor. It has been suggested that the most commonly occurring ESR1 mutations would likely compromise the clinical activity of selective estrogen receptor downregulators and selective estrogen receptor modulators (SERMs) when used as second-line therapies. It was unclear, however, how these mutations, which are likely coexpressed in cells with ERWT, may impact response to ER ligands in a clinically meaningful manner. To address this issue, we dissected the molecular mechanism(s) underlying ESR1-mutant pharmacology in models relevant to metastatic disease. These studies revealed that the response of ESR1 mutations to ligands was dictated primarily by the relative coexpression of ERWT in cells. Specifically, dysregulated pharmacology was only evident in cells in which the mutants were overexpressed relative to ligand-activated ERWT; a finding that highlights the role of allelism in determining ER-mutant pharmacology. Importantly, we demonstrated that the antagonist activity of the SERM, lasofoxifene, was not impacted by mutant status; a finding that has led to its clinical evaluation as a treatment for patients with advanced ER-positive breast cancer whose tumors harbor ESR1 mutations.
Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Mutação , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Ligantes , Ligação Proteica , Células Tumorais CultivadasRESUMO
A drug used in hormone replacement therapy can target estrogen receptors that have become resistant to breast cancer treatments.
Assuntos
Proteínas Mutantes/metabolismo , Receptores de Estrogênio/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Humanos , Mutação/genética , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêuticoRESUMO
Extrinsic pathway agonists have failed repeatedly in the clinic for three core reasons: Inefficient ligand-induced receptor multimerization, poor pharmacokinetic properties, and tumor intrinsic resistance. Here, we address these factors by (i) using a highly potent death receptor agonist (DRA), (ii) developing an injectable depot for sustained DRA delivery, and (iii) leveraging a CRISPR-Cas9 knockout screen in DRA-resistant colorectal cancer (CRC) cells to identify functional drivers of resistance. Pharmacological blockade of XIAP and BCL-XL by targeted small-molecule drugs strongly enhanced the antitumor activity of DRA in CRC cell lines. Recombinant fusion of the DRA to a thermally responsive elastin-like polypeptide (ELP) creates a gel-like depot upon subcutaneous injection that abolishes tumors in DRA-sensitive Colo205 mouse xenografts. Combination of ELPdepot-DRA with BCL-XL and/or XIAP inhibitors led to tumor growth inhibition and extended survival in DRA-resistant patient-derived xenografts. This strategy provides a precision medicine approach to overcome similar challenges with other protein-based cancer therapies.
Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Proteína bcl-X/antagonistas & inibidores , Animais , Antineoplásicos/química , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Células HCT116 , Células HT29 , Humanos , Camundongos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/genética , Proteína bcl-X/metabolismoRESUMO
We previously identified a small basic leucine zipper (bZIP) protein, Jun dimerization protein 2 (JDP-2), that acts as a coregulator of the N-terminal transcriptional activation domain of progesterone receptor (PR). We show here that JDP-2, through interaction with the DNA binding domain (DBD), induces or stabilizes structure in the N-terminal domain in a manner that correlates with JDP-2 stimulation of transcriptional activity. Circular dichroism spectroscopy experiments showed that JDP-2 interaction caused a significant increase in overall helical content of a two-domain PR polypeptide containing the N-terminal domain and DBD and that the change in structure resides primarily in the N-terminal domain. Thermal melt curves showed that the JDP-2/PR complex is significantly more stable than either protein alone, and partial proteolysis confirmed that JDP-2 interaction alters conformation of the N-terminal domain of PR. Functional analysis of N-terminal domain mutants and receptor chimeras provides evidence that the stimulatory effect of JDP-2 on transcriptional activity of PR is mediated through an interdomain communication between the DBD and the N-terminal domain and that transcriptional activity and functional response to JDP-2 are mediated by multiple elements of the N-terminal domain as opposed to a discrete region.
Assuntos
Receptores de Progesterona/química , Animais , Células COS , Chlorocebus aethiops , Humanos , Técnicas In Vitro , Modelos Moleculares , Mapeamento de Peptídeos , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Ratos , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ativação TranscricionalRESUMO
Altered mitochondrial dynamics can broadly impact tumor cell physiology. Using genetic and pharmacological profiling of cancer cell lines and human tumors, we here establish that perturbations to the mitochondrial dynamics network also result in specific therapeutic vulnerabilities. In particular, through distinct mechanisms, tumors with increased mitochondrial fragmentation or connectivity are hypersensitive to SMAC mimetics, a class of compounds that induce apoptosis through inhibition of IAPs and for which robust sensitivity biomarkers remain to be identified. Further, because driver oncogenes exert dominant control over mitochondrial dynamics, oncogene-targeted therapies can be used to sensitize tumors to SMAC mimetics via their effects on fission/fusion dynamics. Collectively, these data demonstrate that perturbations to the mitochondrial dynamics network induce targetable vulnerabilities across diverse human tumors and, more broadly, suggest that the altered structures, activities, and trafficking of cellular organelles may facilitate additional cancer therapeutic opportunities.
Assuntos
Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Neoplasias/metabolismo , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Neoplasias/tratamento farmacológico , Neoplasias/genéticaRESUMO
The progesterone receptor (PR) contains two transcription activation function (AF) domains, constitutive AF-1 in the N terminus and AF-2 in the C terminus. AF-2 activity is mediated by a hormone-dependent interaction with a family of steroid receptor coactivators (SRCs). SRC-1 can also stimulate AF-1 activity through a secondary domain that interacts simultaneously with the primary AF-2 interaction site. Other protein interactions and mechanisms that mediate AF-1 activity are not well defined. By interaction cloning, we identified an AP-1 family member, Jun dimerization protein 2 (JDP-2), as a novel PR-interacting protein. JDP-2 was first defined as a c-Jun interacting protein that functions as an AP-1 repressor. PR and JDP-2 interact directly in vitro through the DNA binding domain (DBD) of PR and the basic leucine zipper (bZIP) region of JDP-2. The two proteins also physically associate in mammalian cells, as detected by coimmunoprecipitation, and are recruited in vivo to a progesterone-inducible target gene promoter, as detected by a chromatin immunoprecipitation (ChIP) assay. In cell transfection assays, JDP-2 substantially increased hormone-dependent PR-mediated transactivation and worked primarily by stimulating AF-1 activity. JDP-2 is a substantially stronger coactivator of AF-1 than SRC-1 and stimulates AF-1 independent of SRC-1 pathways. The PR DBD is necessary but not sufficient for JDP-2 stimulation of PR activity; the DBD and AF-1 are required together. JDP-2 lacks an intrinsic activation domain and makes direct protein interactions with other coactivators, including CBP and p300 CBP-associated factor (pCAF), but not with SRCs. These results indicate that JDP-2 stimulates AF-1 activity by the novel mechanism of docking to the DBD and recruiting or stabilizing N-terminal PR interactions with other general coactivators. JDP-2 has preferential activity on PR among the nuclear receptors tested and is expressed in progesterone target cells and tissues, suggesting that it has a physiological role in PR function.