Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Respir Res ; 25(1): 42, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238743

RESUMO

THE QUESTION ADDRESSED BY THE STUDY: Good biological indicators capable of predicting chronic obstructive pulmonary disease (COPD) phenotypes and clinical trajectories are lacking. Because nuclear and mitochondrial genomes are damaged and released by cigarette smoke exposure, plasma cell-free mitochondrial and nuclear DNA (cf-mtDNA and cf-nDNA) levels could potentially integrate disease physiology and clinical phenotypes in COPD. This study aimed to determine whether plasma cf-mtDNA and cf-nDNA levels are associated with COPD disease severity, exacerbations, and mortality risk. MATERIALS AND METHODS: We quantified mtDNA and nDNA copy numbers in plasma from participants enrolled in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE, n = 2,702) study and determined associations with relevant clinical parameters. RESULTS: Of the 2,128 participants with COPD, 65% were male and the median age was 64 (interquartile range, 59-69) years. During the baseline visit, cf-mtDNA levels positively correlated with future exacerbation rates in subjects with mild/moderate and severe disease (Global Initiative for Obstructive Lung Disease [GOLD] I/II and III, respectively) or with high eosinophil count (≥ 300). cf-nDNA positively associated with an increased mortality risk (hazard ratio, 1.33 [95% confidence interval, 1.01-1.74] per each natural log of cf-nDNA copy number). Additional analysis revealed that individuals with low cf-mtDNA and high cf-nDNA abundance further increased the mortality risk (hazard ratio, 1.62 [95% confidence interval, 1.16-2.25] per each natural log of cf-nDNA copy number). ANSWER TO THE QUESTION: Plasma cf-mtDNA and cf-nDNA, when integrated into quantitative clinical measurements, may aid in improving COPD severity and progression assessment.


Assuntos
Ácidos Nucleicos Livres , Doença Pulmonar Obstrutiva Crônica , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Ácidos Nucleicos Livres/genética , DNA Mitocondrial , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Biomarcadores , Fenótipo , Progressão da Doença
2.
J Biol Chem ; 295(46): 15677-15691, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32900851

RESUMO

Progress in the study of circulating, cell-free nuclear DNA (ccf-nDNA) in cancer detection has led to the development of noninvasive clinical diagnostic tests and has accelerated the evaluation of ccf-nDNA abundance as a disease biomarker. Likewise, circulating, cell-free mitochondrial DNA (ccf-mtDNA) is under similar investigation. However, optimal ccf-mtDNA isolation parameters have not been established, and inconsistent protocols for ccf-nDNA collection, storage, and analysis have hindered its clinical utility. Until now, no studies have established a method for high-throughput isolation that considers both ccf-nDNA and ccf-mtDNA. We initially optimized human plasma digestion and extraction conditions for maximal recovery of these DNAs using a magnetic bead-based isolation method. However, when we incorporated this method onto a high-throughput platform, initial experiments found that DNA isolated from identical human plasma samples displayed plate edge effects resulting in low ccf-mtDNA reproducibility, whereas ccf-nDNA was less affected. Therefore, we developed a detailed protocol optimized for both ccf-mtDNA and ccf-nDNA recovery that uses a magnetic bead-based isolation process on an automated 96-well platform. Overall, we calculate an improved efficiency of recovery of ∼95-fold for ccf-mtDNA and 20-fold for ccf-nDNA when compared with the initial procedure. Digestion conditions, liquid-handling characteristics, and magnetic particle processor programming all contributed to increased recovery without detectable positional effects. To our knowledge, this is the first high-throughput approach optimized for ccf-mtDNA and ccf-nDNA recovery and serves as an important starting point for clinical studies.


Assuntos
Núcleo Celular/genética , Ácidos Nucleicos Livres/sangue , DNA Mitocondrial/sangue , Ensaios de Triagem em Larga Escala/métodos , Mitocôndrias/genética , Automação , Ácidos Nucleicos Livres/isolamento & purificação , Ácidos Nucleicos Livres/metabolismo , DNA Mitocondrial/isolamento & purificação , DNA Mitocondrial/metabolismo , Endopeptidase K/metabolismo , Humanos , Magnetismo , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real , Temperatura
3.
Clin Infect Dis ; 69(10): 1757-1763, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30980715

RESUMO

INTRODUCTION: Autologous hematopoietic stem cell transplantation (AHSCT) with anti-thymocyte globulin (ATG) conditioning as treatment of active multiple sclerosis (MS) is rapidly increasing across Europe (EBMT registry data 2017). Clinically significant Epstein-Barr virus reactivation (EBV-R) following AHSCT with ATG for severe autoimmune conditions is an underrecognized complication relative to T-cell deplete transplants performed for hematological diseases. This retrospective study reports EBV-R associated significant clinical sequelae in MS patients undergoing AHSCT with rabbit ATG. METHODS: Retrospective data were analyzed for 36 consecutive MS-AHSCT patients at Kings College Hospital, London. All patients routinely underwent weekly EBV DNA polymerase chain reaction monitoring and serum electrophoresis for monoclonal gammopathy (MG or M-protein). EBV-R with rising Epstein-Barr viral load, M-protein, and associated clinical sequelae were captured from clinical records. RESULTS: All patients had evidence of rising EBV DNA-emia, including 7 who were lost to long-term follow-up, with a number of them developing high EBV viral load and associated lymphoproliferative disorder (LPD). Nearly 72% (n = 18/29) developed de novo MG, some with significant neurological consequences with high M-protein and EBV-R. Six patients required anti-CD20 therapy (rituximab) with complete resolution of EBV related symptoms. Receiver operating characteristics estimated a peak EBV viremia of >500 000 DNA copies/mL correlated with high sensitivity (85.5%) and specificity (82.5%) (area under the curve: 0.87; P = .004) in predicting EBV-R related significant clinical events. CONCLUSION: Symptomatic EBV reactivation increases risk of neurological sequelae and LPD in MS-AHSCT. We recommend regular monitoring for EBV and serum electrophoresis for MG in MS patients in the first 3 months post-AHSCT.


Assuntos
Soro Antilinfocitário/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Herpesvirus Humano 4/fisiologia , Esclerose Múltipla/terapia , Paraproteinemias/etiologia , Condicionamento Pré-Transplante/efeitos adversos , Ativação Viral , Adulto , Animais , Soro Antilinfocitário/imunologia , DNA Viral/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Coelhos/imunologia , Estudos Retrospectivos , Transplante Autólogo , Carga Viral
4.
Psychoneuroendocrinology ; 155: 106322, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423094

RESUMO

Stress triggers anticipatory physiological responses that promote survival, a phenomenon termed allostasis. However, the chronic activation of energy-dependent allostatic responses results in allostatic load, a dysregulated state that predicts functional decline, accelerates aging, and increases mortality in humans. The energetic cost and cellular basis for the damaging effects of allostatic load have not been defined. Here, by longitudinally profiling three unrelated primary human fibroblast lines across their lifespan, we find that chronic glucocorticoid exposure increases cellular energy expenditure by ∼60%, along with a metabolic shift from glycolysis to mitochondrial oxidative phosphorylation (OxPhos). This state of stress-induced hypermetabolism is linked to mtDNA instability, non-linearly affects age-related cytokines secretion, and accelerates cellular aging based on DNA methylation clocks, telomere shortening rate, and reduced lifespan. Pharmacologically normalizing OxPhos activity while further increasing energy expenditure exacerbates the accelerated aging phenotype, pointing to total energy expenditure as a potential driver of aging dynamics. Together, our findings define bioenergetic and multi-omic recalibrations of stress adaptation, underscoring increased energy expenditure and accelerated cellular aging as interrelated features of cellular allostatic load.


Assuntos
Alostase , Humanos , Alostase/fisiologia , Envelhecimento/fisiologia , Adaptação Fisiológica/fisiologia , Senescência Celular , Metabolismo Energético
5.
Commun Biol ; 6(1): 22, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635485

RESUMO

Patients with primary mitochondrial oxidative phosphorylation (OxPhos) defects present with fatigue and multi-system disorders, are often lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. By integrating data from 17 cohorts of patients with mitochondrial diseases (n = 690) we find evidence that these disorders increase resting energy expenditure, a state termed hypermetabolism. We examine this phenomenon longitudinally in patient-derived fibroblasts from multiple donors. Genetically or pharmacologically disrupting OxPhos approximately doubles cellular energy expenditure. This cell-autonomous state of hypermetabolism occurs despite near-normal OxPhos coupling efficiency, excluding uncoupling as a general mechanism. Instead, hypermetabolism is associated with mitochondrial DNA instability, activation of the integrated stress response (ISR), and increased extracellular secretion of age-related cytokines and metabokines including GDF15. In parallel, OxPhos defects accelerate telomere erosion and epigenetic aging per cell division, consistent with evidence that excess energy expenditure accelerates biological aging. To explore potential mechanisms for these effects, we generate a longitudinal RNASeq and DNA methylation resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations. Taken together, these findings highlight the need to understand how OxPhos defects influence the energetic cost of living, and the link between hypermetabolism and aging in cells and patients with mitochondrial diseases.


Assuntos
Doenças Mitocondriais , Fosforilação Oxidativa , Humanos , Longevidade , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
6.
Cells ; 11(3)2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-35159179

RESUMO

Cigarette smoke (CS) is the most common risk factor for chronic obstructive pulmonary disease (COPD). The present study aimed to elucidate whether mtDNA is released upon CS exposure and is detected in the plasma of former smokers affected by COPD as a possible consequence of airway damage. We measured cell-free mtDNA (cf-mtDNA) and nuclear DNA (cf-nDNA) in COPD patient plasma and mouse serum with CS-induced emphysema. The plasma of patients with COPD and serum of mice with CS-induced emphysema showed increased cf-mtDNA levels. In cell culture, exposure to a sublethal dose of CSE decreased mitochondrial membrane potential, increased oxidative stress, dysregulated mitochondrial dynamics, and triggered mtDNA release in extracellular vesicles (EVs). Mitochondrial DNA release into EVs occurred concomitantly with increased expression of markers that associate with DNA damage responses, including DNase III, DNA-sensing receptors (cGAS and NLRP3), proinflammatory cytokines (IL-1ß, IL-6, IL-8, IL-18, and CXCL2), and markers of senescence (p16 and p21); the majority of the responses are also triggered by cytosolic DNA delivery in vitro. Exposure to a lethal CSE dose preferentially induced mtDNA and nDNA release in the cell debris. Collectively, the results of this study associate markers of mitochondrial stress, inflammation, and senescence with mtDNA release induced by CSE exposure. Because high cf-mtDNA is detected in the plasma of COPD patients and serum of mice with emphysema, our findings support the future study of cf-mtDNA as a marker of mitochondrial stress in response to CS exposure and COPD pathology.


Assuntos
Fumar Cigarros , Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Fumar Cigarros/efeitos adversos , DNA Mitocondrial , Humanos , Camundongos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Nicotiana/genética
7.
Sci Data ; 9(1): 751, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463290

RESUMO

Aging is a process of progressive change. To develop biological models of aging, longitudinal datasets with high temporal resolution are needed. Here we report a multi-omics longitudinal dataset for cultured primary human fibroblasts measured across their replicative lifespans. Fibroblasts were sourced from both healthy donors (n = 6) and individuals with lifespan-shortening mitochondrial disease (n = 3). The dataset includes cytological, bioenergetic, DNA methylation, gene expression, secreted proteins, mitochondrial DNA copy number and mutations, cell-free DNA, telomere length, and whole-genome sequencing data. This dataset enables the bridging of mechanistic processes of aging as outlined by the "hallmarks of aging", with the descriptive characterization of aging such as epigenetic age clocks. Here we focus on bridging the gap for the hallmark mitochondrial metabolism. Our dataset includes measurement of healthy cells, and cells subjected to over a dozen experimental manipulations targeting oxidative phosphorylation (OxPhos), glycolysis, and glucocorticoid signaling, among others. These experiments provide opportunities to test how cellular energetics affect the biology of cellular aging. All data are publicly available at our webtool: https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/.


Assuntos
Envelhecimento , Fibroblastos , Humanos , Longevidade , Senescência Celular , Glicólise
8.
J Biomol Tech ; 32(3): 134-136, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-35027871

RESUMO

At this writing, over 100 million people have tested positive for Corona Virus Disease-19 (COVID-19), and the global death toll from this disease has reached nearly 3 million. Despite the many tests currently available, we have not yet achieved the testing capacity needed to limit the spread of the virus and mitigate suffering worldwide. We have developed the One Hour COVID Test to address this challenge. Our test leverages an easy-to-use, commercially available oral swab kit for sample collection paired with a novel RNA processing protocol and a simple colorimetric assay that requires minimal equipment. The test can be easily scaled via automation and takes 1 h from sample collection to result.


Assuntos
COVID-19 , Colorimetria , Teste para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Tempo de Protrombina , RNA Viral/genética , SARS-CoV-2 , Sensibilidade e Especificidade
9.
J Biomol Tech ; 32(3): 228-275, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-35136384

RESUMO

As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.


Assuntos
COVID-19 , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2 , COVID-19/diagnóstico , Teste de Ácido Nucleico para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular , Pandemias , RNA Viral , SARS-CoV-2/isolamento & purificação
10.
Hastings Cent Rep ; 50(6): 10-14, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33315254

RESUMO

The speed and scale of the COVID-19 pandemic has highlighted the limits of current health systems and the potential promise of non-establishment research such as "DIY" research. We consider one example of how DIY research is responding to the pandemic, discuss the challenges faced by DIY research more generally, and suggest that a "trust architecture" should be developed now to contribute to successful future DIY efforts.


Assuntos
COVID-19/terapia , Difusão de Inovações , Autoeficácia , Apoio Social , COVID-19/psicologia , Humanos
11.
Int J Nurs Educ Scholarsh ; 5: Article5, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18312226

RESUMO

Nursing is a profession and a social phenomenon. Developing a concept of oneself as a professional nurse is a process of socialization and a critical outcome of a nursing program of study. This process is a key concern of nurse educators who design learning experiences as part of the educational program. The purpose of this paper is to describe a grounded theory investigation into the process of developing a self-concept of nurse in baccalaureate nursing students. The grounded theory that emerged from this inquiry was "Building on a Foundation of Knowledge by 'Taking it All In.'" This foundation is built upon in small portions at a time with knowledge gleaned from a variety of sources. Nurse educators, found to be a source of knowledge, can take specific steps to deliberately embellish the foundation and appreciate the significance of the contributions of other sources of knowledge in developing the self-concept of nurse.


Assuntos
Bacharelado em Enfermagem/métodos , Papel do Profissional de Enfermagem , Autoimagem , Estudantes de Enfermagem/psicologia , Competência Clínica , Currículo , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Cultura Organizacional , Socialização
12.
Nat Genet ; 50(3): 375-380, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29434356

RESUMO

Host resistance and fungicide treatments are cornerstones of plant-disease control. Here, we show that these treatments allow sex and modulate parenthood in the fungal wheat pathogen Zymoseptoria tritici. We demonstrate that the Z. tritici-wheat interaction complies with the gene-for-gene model by identifying the effector AvrStb6, which is recognized by the wheat resistance protein Stb6. Recognition triggers host resistance, thus implying removal of avirulent strains from pathogen populations. However, Z. tritici crosses on wheat show that sex occurs even with an avirulent parent, and avirulence alleles are thereby retained in subsequent populations. Crossing fungicide-sensitive and fungicide-resistant isolates under fungicide pressure results in a rapid increase in resistance-allele frequency. Isolates under selection always act as male donors, and thus disease control modulates parenthood. Modeling these observations for agricultural and natural environments reveals extended durability of host resistance and rapid emergence of fungicide resistance. Therefore, fungal sex has major implications for disease control.


Assuntos
Ascomicetos/patogenicidade , Farmacorresistência Fúngica/genética , Polinização , Proteínas Quinases/genética , Estresse Fisiológico , Estrobilurinas/farmacologia , Triticum/genética , Agricultura , Ascomicetos/efeitos dos fármacos , Mapeamento Cromossômico , Cromossomos de Plantas , Epistasia Genética , Fungicidas Industriais/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Polinização/efeitos dos fármacos , Polinização/genética , Proteínas Quinases/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Triticum/fisiologia
13.
Mol Plant Pathol ; 16(9): 931-45, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25727413

RESUMO

Fungal plant pathogens, such as Zymoseptoria tritici (formerly known as Mycosphaerella graminicola), secrete repertoires of effectors to facilitate infection or trigger host defence mechanisms. The discovery and functional characterization of effectors provides valuable knowledge that can contribute to the design of new and effective disease management strategies. Here, we combined bioinformatics approaches with expression profiling during pathogenesis to identify candidate effectors of Z. tritici. In addition, a genetic approach was conducted to map quantitative trait loci (QTLs) carrying putative effectors, enabling the validation of both complementary strategies for effector discovery. In planta expression profiling revealed that candidate effectors were up-regulated in successive waves corresponding to consecutive stages of pathogenesis, contrary to candidates identified by QTL mapping that were, overall, expressed at low levels. Functional analyses of two top candidate effectors (SSP15 and SSP18) showed their dispensability for Z. tritici pathogenesis. These analyses reveal that generally adopted criteria, such as protein size, cysteine residues and expression during pathogenesis, may preclude an unbiased effector discovery. Indeed, genetic mapping of genomic regions involved in specificity render alternative effector candidates that do not match the aforementioned criteria, but should nevertheless be considered as promising new leads for effectors that are crucial for the Z. tritici-wheat pathosystem.


Assuntos
Ascomicetos/patogenicidade , Proteínas Fúngicas/biossíntese , Triticum/microbiologia , Fatores de Virulência/biossíntese , Ascomicetos/genética , Ascomicetos/metabolismo , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Genes Fúngicos , Locos de Características Quantitativas , Fatores de Virulência/genética
14.
PLoS One ; 4(6): e5863, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-19516898

RESUMO

Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these chromosomes are not present universally in the genome of the organism they can be considered to be dispensable. To analyze the meiotic transmission of unequal chromosome numbers, two segregating populations were generated by crossing genetically unrelated parent isolates originating from Algeria and The Netherlands that had pathogenicity towards durum or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed that M. graminicola has up to eight dispensable chromosomes, the highest number reported in filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 38% of the chromosomal complement. Chromosome numbers among progeny isolates varied widely, with some progeny missing up to three chromosomes, while other strains were disomic for one or more chromosomes. Between 15-20% of the progeny isolates lacked one or more chromosomes that were present in both parents. The two high-density maps showed no recombination of dispensable chromosomes and hence, their meiotic processing may require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also enabled the identification of individual twin isolates from a single ascus that shared the same missing or doubled chromosomes indicating that the chromosomal polymorphisms were mitotically stable and originated from nondisjunction during the second division and, less frequently, during the first division of fungal meiosis. High genome plasticity could be among the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic conditions in wheat fields.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Genoma Fúngico , Meiose , Plantas/microbiologia , Mapeamento Cromossômico , Cromossomos Fúngicos , Cruzamentos Genéticos , Genes Fúngicos , Ligação Genética , Marcadores Genéticos , Modelos Genéticos , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Translocação Genética
15.
Fungal Genet Biol ; 44(5): 389-97, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17267248

RESUMO

We studied the possibility of a teleomorph associated with the genotypically diverse septoria speckled leaf blotch (SSLB) pathogen of barley, Septoria passerinii. A teleomorph in the genus Mycosphaerella had been predicted previously based on phylogenetic analyses. This prediction was tested with experiments in the Netherlands and the United States by co-inoculating isolates with opposite mating types onto susceptible barley cultivars and monitoring leaves for sexual structures and for the discharge of ascospores. Characterization of putative hybrid progeny by both molecular (AFLP, RAPD, mating type, and ITS sequencing) and phenotypic analyses confirmed that a Mycosphaerella teleomorph of S. passerinii has been discovered approximately 125 years after the description of the anamorph. Progeny had recombinant genotypes of the molecular alleles present in the parents, and the identities of representative progeny isolates as S. passerinii were confirmed by ITS sequencing. A previously unknown sexual cycle explains the high degree of genetic variation among isolates found in nature. The experimental identification of a predicted teleomorph for S. passerinii indicates that cryptic sexual cycles may be common for many other "asexual" fungi with high levels of genotypic diversity.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Hordeum/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Genótipo , Fenótipo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA