Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
J Biol Chem ; 299(12): 105374, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866631

RESUMO

Iron delivery to the plasma is closely coupled to erythropoiesis, the production of red blood cells, as this process consumes most of the circulating plasma iron. In response to hemorrhage and other erythropoietic stresses, increased erythropoietin stimulates the production of the hormone erythroferrone (ERFE) by erythrocyte precursors (erythroblasts) developing in erythropoietic tissues. ERFE acts on the liver to inhibit bone morphogenetic protein (BMP) signaling and thereby decrease hepcidin production. Decreased circulating hepcidin concentrations then allow the release of iron from stores and increase iron absorption from the diet. Guided by evolutionary analysis and Alphafold2 protein complex modeling, we used targeted ERFE mutations, deletions, and synthetic ERFE segments together with cell-based bioassays and surface plasmon resonance to probe the structural features required for bioactivity and BMP binding. We define the ERFE active domain and multiple structural features that act together to entrap BMP ligands. In particular, the hydrophobic helical segment 81 to 86 and specifically the highly conserved tryptophan W82 in the N-terminal region are essential for ERFE bioactivity and Alphafold2 modeling places W82 between two tryptophans in its ligands BMP2, BMP6, and the BMP2/6 heterodimer, an interaction similar to those that bind BMPs to their cognate receptors. Finally, we identify the cationic region 96-107 and the globular TNFα-like domain 186-354 as structural determinants of ERFE multimerization that increase the avidity of ERFE for BMP ligands. Collectively, our results provide further insight into the ERFE-mediated inhibition of BMP signaling in response to erythropoietic stress.


Assuntos
Hepcidinas , Ferro , Hormônios Peptídicos , Domínios Proteicos , Proteínas Morfogenéticas Ósseas/metabolismo , Eritropoese , Hepcidinas/genética , Hepcidinas/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Humanos , Linhagem Celular , Hormônios Peptídicos/química , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Sequência de Aminoácidos , Estrutura Terciária de Proteína , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estresse Fisiológico
2.
Pulm Pharmacol Ther ; 80: 102209, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36907545

RESUMO

INTRODUCTION: Hyperoxia-induced lung injury is characterized by acute alveolar injury, disrupted epithelial-mesenchymal signaling, oxidative stress, and surfactant dysfunction, yet currently, there is no effective treatment. Although a combination of aerosolized pioglitazone (PGZ) and a synthetic lung surfactant (B-YL peptide, a surfactant protein B mimic) prevents hyperoxia-induced neonatal rat lung injury, whether it is also effective in preventing hyperoxia-induced adult lung injury is unknown. METHOD: Using adult mice lung explants, we characterize the effects of 24 and 72-h (h) exposure to hyperoxia on 1) perturbations in Wingless/Int (Wnt) and Transforming Growth Factor (TGF)-ß signaling pathways, which are critical mediators of lung injury, 2) aberrations of lung homeostasis and injury repair pathways, and 3) whether these hyperoxia-induced aberrations can be blocked by concomitant treatment with PGZ and B-YL combination. RESULTS: Our study reveals that hyperoxia exposure to adult mouse lung explants causes activation of Wnt (upregulation of key Wnt signaling intermediates ß-catenin and LEF-1) and TGF-ß (upregulation of key TGF-ß signaling intermediates TGF-ß type I receptor (ALK5) and SMAD 3) signaling pathways accompanied by an upregulation of myogenic proteins (calponin and fibronectin) and inflammatory cytokines (IL-6, IL-1ß, and TNFα), and alterations in key endothelial (VEGF-A and its receptor FLT-1, and PECAM-1) markers. All of these changes were largely mitigated by the PGZ + B-YL combination. CONCLUSION: The effectiveness of the PGZ + B-YL combination in blocking hyperoxia-induced adult mice lung injury ex-vivo is promising to be an effective therapeutic approach for adult lung injury in vivo.


Assuntos
Hiperóxia , Lesão Pulmonar , Animais , Camundongos , Hiperóxia/complicações , Hiperóxia/metabolismo , Pulmão , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Lesão Pulmonar/metabolismo , Pioglitazona/farmacologia , Pioglitazona/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Agonistas PPAR-gama , Tensoativos/metabolismo , Tensoativos/farmacologia , Fator de Crescimento Transformador beta/farmacologia
3.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446012

RESUMO

Lung surfactant is a complex mixture of phospholipids and surfactant proteins that is produced in alveolar type 2 cells. It prevents lung collapse by reducing surface tension and is involved in innate immunity. Exogenous animal-derived and, more recently, synthetic lung surfactant has shown clinical efficacy in surfactant-deficient premature infants and in critically ill patients with acute respiratory distress syndrome (ARDS), such as those with severe COVID-19 disease. COVID-19 pneumonia is initiated by the binding of the viral receptor-binding domain (RBD) of SARS-CoV-2 to the cellular receptor angiotensin-converting enzyme 2 (ACE2). Inflammation and tissue damage then lead to loss and dysfunction of surface activity that can be relieved by treatment with an exogenous lung surfactant. Surfactant protein B (SP-B) is pivotal for surfactant activity and has anti-inflammatory effects. Here, we study the binding of two synthetic SP-B peptide mimics, Super Mini-B (SMB) and B-YL, to a recombinant human ACE2 receptor protein construct using molecular docking and surface plasmon resonance (SPR) to evaluate their potential as antiviral drugs. The SPR measurements confirmed that both the SMB and B-YL peptides bind to the rhACE2 receptor with affinities like that of the viral RBD-ACE2 complex. These findings suggest that synthetic lung surfactant peptide mimics can act as competitive inhibitors of the binding of viral RBD to the ACE2 receptor.


Assuntos
COVID-19 , Surfactantes Pulmonares , Animais , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/química , Simulação de Acoplamento Molecular , Peptídeos , Proteínas Associadas a Surfactantes Pulmonares , Ligação Proteica , Receptores Virais , Surfactantes Pulmonares/farmacologia , Tensoativos
4.
Respir Res ; 23(1): 78, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379243

RESUMO

BACKGROUND: Dry powder (DP) synthetic lung surfactant may be an effective means of noninvasive delivery of surfactant therapy to premature infants supported with nasal continuous positive airway pressure (nCPAP) in low-resource settings. METHODS: Four experimental DP surfactant formulations consisting of 70% of phospholipids (DPPC:POPG 7:3), 3% Super Mini-B (SMB) or its sulfur-free derivate B-YL as SP-B peptide mimic, 25% of lactose or trehalose as excipient, and 2% of NaCl were formulated using spray drying. In vitro surface activity was confirmed with captive bubble surfactometry. Surfactant particle size was determined with a cascade impactor and inhaled dose was quantified using a spontaneously breathing premature lamb lung model supported with CPAP. In vivo surfactant efficacy was demonstrated in three studies. First, oxygenation and lung compliance were monitored after intratracheal instillation of resuspended DP surfactant in intubated, ventilated, lavaged, surfactant-deficient juvenile rabbits. In dose-response studies, ventilated, lavaged, surfactant-deficient rabbits received 30, 60, 120 or 240 mg/kg of DP B-YL:Lactose or B-YL:Trehalose surfactant by aerosol delivery with a low flow aerosol chamber via their endotracheal tube. Noninvasive aerosolization of DP B-YL:Trehalose surfactant via nasal prongs was tested in spontaneous breathing premature lambs supported with nCPAP. Intratracheal administration of 200 mg/kg of Curosurf®, a liquid porcine surfactant, was used as a positive control. RESULTS: Mass median aerosol diameter was 3.6 µm with a geometric standard deviation of 1.8. All four experimental surfactants demonstrated high surface efficacy of intratracheal instillation of a bolus of ~ 100 mg/kg of surfactant with improvement of oxygenation and lung compliance. In the dose-response studies, rabbits received incremental doses of DP B-YL:Lactose or B-YL:Trehalose surfactant intratracheally and showed an optimal response in oxygenation and lung function at a dose of 120-240 mg/kg. Aerosol delivery via nasal prongs of 1 or 2 doses of ~ 100 mg/kg of B-YL:Trehalose surfactant to premature lambs supported with nCPAP resulted in stabilization of spontaneous breathing and oxygenation and lung volumes comparable to the positive control. CONCLUSION: These studies confirm the clinical potential of DP synthetic lung surfactant with B-YL peptide as a SP-B mimic to alleviate surfactant deficiency when delivered as a liquid bolus or as an aerosol.


Assuntos
Excipientes , Tensoativos , Aerossóis , Animais , Excipientes/farmacologia , Humanos , Pulmão , Pós/farmacologia , Coelhos , Ovinos , Suínos
5.
Curr Top Membr ; 87: 1-45, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34696882

RESUMO

Langmuir monolayers at gas/liquid interfaces provide a rich framework to investigate the interplay between multiscale geometry and mechanics. Monolayer collapse is investigated at a topological and geometric level by building a scale space M from experimental imaging data. We present a general lipid monolayer collapse phase diagram, which shows that wrinkling, folding, crumpling, shear banding, and vesiculation are a continuous set of mechanical states that can be approached by either tuning monolayer composition or temperature. The origin of the different mechanical states can be understood by investigating the monolayer geometry at two scales: fluorescent vs atomic force microscopy imaging. We show that an interesting switch in continuity occurs in passing between the two scales, CAFM∈MAFM≠CFM∈M. Studying the difference between monolayers that fold vs shear band, we show that shear banding is correlated to the persistence of a multi-length scale microstructure within the monolayer at all surface pressures. A detailed analytical geometric formalism to describe this microstructure is developed using the theory of structured deformations. Lastly, we provide the first ever finite element simulation of lipid monolayer collapse utilizing a direct mapping from the experimental image space M into a simulation domain P. We show that elastic dissipation in the form of bielasticity is a necessary and sufficient condition to capture loss of in-plane stability and shear banding.


Assuntos
Lipídeos , Pressão
6.
BMC Pulm Med ; 21(1): 330, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686153

RESUMO

BACKGROUND: Optimal functionality of synthetic lung surfactant for treatment of respiratory distress syndrome in preterm infants largely depends on the quality and quantity of the surfactant protein B (SP-B) peptide mimic and the lipid mixture. B-YL peptide is a 41-residue sulfur-free SP-B mimic with its cysteine and methionine residues replaced by tyrosine and leucine, respectively, to enhance its oxidation resistance. AIM: Testing the structural and functional stability of the B-YL peptide in synthetic surfactant lipids after long-term storage. METHODS: The structural and functional properties of B-YL peptide in surfactant lipids were studied using three production runs of B-YL peptides in synthetic surfactant lipids. Each run was held at 5 °C ambient temperature for three years and analyzed with structural and computational techniques, i.e., MALDI-TOF mass spectrometry, ATR-Fourier Transform Infrared Spectroscopy (ATR-FTIR), secondary homology modeling of a preliminary B-YL structure, and tertiary Molecular Dynamic simulations of B-YL in surfactant lipids, and with functional methods, i.e., captive bubble surfactometry (CBS) and retesting in vivo surface activity in surfactant-deficient young adult rabbits. RESULTS: MALDI-TOF mass spectrometry showed no degradation of the B-YL peptide as a function of stored time. ATR-FTIR studies demonstrated that the B-YL peptide still assumed stable alpha-helical conformations in synthetic surfactant lipids. These structural findings correlated with excellent in vitro surface activity during both quasi-static and dynamic cycling on CBS after three years of cold storage and in vivo surface activity of the aged formulations with improvements in oxygenation and dynamic lung compliance approaching those of the positive control surfactant Curosurf®. CONCLUSIONS: The structure of the B-YL peptide and the in vitro and in vivo functions of the B-YL surfactant were each maintained after three years of refrigeration storage.


Assuntos
Proteína B Associada a Surfactante Pulmonar/química , Surfactantes Pulmonares/química , Tensoativos/química , Animais , Estabilidade de Medicamentos , Metabolismo dos Lipídeos , Proteína B Associada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/metabolismo , Coelhos , Tensoativos/metabolismo
7.
Bioorg Med Chem Lett ; 29(13): 1628-1635, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31047753

RESUMO

A small group of lipid-conjugated Smac mimetics was synthesized to probe the influence of the position of lipidation on overall anti-cancer activity. Specifically, new compounds were modified with lipid(s) in position 3 and C-terminus. Previously described position 2 lipidated analog M11 was also synthesized. The resulting mini library of Smacs lipidated in positions 2, 3 and C-terminus was screened extensively in vitro against a total number of 50 diverse cancer cell lines revealing that both the position of lipidation as well as the type of lipid, influence their anti-cancer activity and cancer type specificity. Moreover, when used in combination therapy with inhibitor of menin-MLL1 protein interactions, position 2 modified analog SM2 showed strong synergistic anti-cancer properties. The most promising lipid-conjugated analogs SM2 and SM6, showed favorable pharmacokinetics and in vivo activity while administered subcutaneously in the preclinical mouse model. Collectively, our findings suggest that lipid modification of Smacs may be a viable approach in the development of anti-cancer therapeutic leads.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas Reguladoras de Apoptose/uso terapêutico , Proteínas Mitocondriais/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/farmacologia , Linhagem Celular Tumoral , Humanos , Proteínas Mitocondriais/farmacologia
8.
J Am Chem Soc ; 140(26): 8246-8259, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29888593

RESUMO

The HIV-1 glycoprotein, gp41, mediates fusion of the virus lipid envelope with the target cell membrane during virus entry into cells. Despite extensive studies of this protein, inconsistent and contradictory structural information abounds in the literature about the C-terminal membrane-interacting region of gp41. This C-terminal region contains the membrane-proximal external region (MPER), which harbors the epitopes for four broadly neutralizing antibodies, and the transmembrane domain (TMD), which anchors the protein to the virus lipid envelope. Due to the difficulty of crystallizing and solubilizing the MPER-TMD, most structural studies of this functionally important domain were carried out using truncated peptides either in the absence of membrane-mimetic solvents or bound to detergents and lipid bicelles. To determine the structural architecture of the MPER-TMD in the native environment of lipid membranes, we have now carried out a solid-state NMR study of the full MPER-TMD segment bound to cholesterol-containing phospholipid bilayers. 13C chemical shifts indicate that the majority of the peptide is α-helical, except for the C-terminus of the TMD, which has moderate ß-sheet character. Intermolecular 19F-19F distance measurements of singly fluorinated peptides indicate that the MPER-TMD is trimerized in the virus-envelope mimetic lipid membrane. Intramolecular 13C-19F distance measurements indicate the presence of a turn between the MPER helix and the TMD helix. This is supported by lipid-peptide and water-peptide 2D 1H-13C correlation spectra, which indicate that the MPER binds to the membrane surface whereas the TMD spans the bilayer. Together, these data indicate that full-length MPER-TMD assembles into a trimeric helix-turn-helix structure in lipid membranes. We propose that the turn between the MPER and TMD may be important for inducing membrane defects in concert with negative-curvature lipid components such as cholesterol and phosphatidylethanolamine, while the surface-bound MPER helix may interact with N-terminal segments of the protein during late stages of membrane fusion.


Assuntos
Proteína gp41 do Envelope de HIV/química , Bicamadas Lipídicas/química , Fosfolipídeos/química , Conformação Proteica , Dobramento de Proteína
9.
Proc Natl Acad Sci U S A ; 112(35): 10926-31, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283363

RESUMO

The C-terminal transmembrane domain (TMD) of viral fusion proteins such as HIV gp41 and influenza hemagglutinin (HA) is traditionally viewed as a passive α-helical anchor of the protein to the virus envelope during its merger with the cell membrane. The conformation, dynamics, and lipid interaction of these fusion protein TMDs have so far eluded high-resolution structure characterization because of their highly hydrophobic nature. Using magic-angle-spinning solid-state NMR spectroscopy, we show that the TMD of the parainfluenza virus 5 (PIV5) fusion protein adopts lipid-dependent conformations and interactions with the membrane and water. In phosphatidylcholine (PC) and phosphatidylglycerol (PG) membranes, the TMD is predominantly α-helical, but in phosphatidylethanolamine (PE) membranes, the TMD changes significantly to the ß-strand conformation. Measured order parameters indicate that the strand segments are immobilized and thus oligomerized. (31)P NMR spectra and small-angle X-ray scattering (SAXS) data show that this ß-strand-rich conformation converts the PE membrane to a bicontinuous cubic phase, which is rich in negative Gaussian curvature that is characteristic of hemifusion intermediates and fusion pores. (1)H-(31)P 2D correlation spectra and (2)H spectra show that the PE membrane with or without the TMD is much less hydrated than PC and PG membranes, suggesting that the TMD works with the natural dehydration tendency of PE to facilitate membrane merger. These results suggest a new viral-fusion model in which the TMD actively promotes membrane topological changes during fusion using the ß-strand as the fusogenic conformation.


Assuntos
Fusão Celular , Proteína gp41 do Envelope de HIV/química , Hemaglutininas Virais/química , Proteínas Virais de Fusão/química , Lipídeos de Membrana/química , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Espalhamento a Baixo Ângulo , Água/química , Difração de Raios X
10.
Biochim Biophys Acta ; 1858(4): 904-12, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26775740

RESUMO

The overall goal of this work is to study the combined effects of Mini-B, a 34 residue synthetic analog of the lung surfactant protein SP-B, and cholesterol, a neutral lipid, on a model binary lipid mixture containing dipalmitolphosphatidylcholine (DPPC) and palmitoyl-oleoyl-phosphatidylglycerol (POPG), that is often used to mimic the primary phospholipid composition of lung surfactants. Using surface pressure vs. mean molecular area isotherms, fluorescence imaging and analysis of lipid domain size distributions; we report on changes in the structure, function and stability of the model lipid-protein films in the presence and absence of varying composition of cholesterol. Our results indicate that at low cholesterol concentrations, Mini-B can prevent cholesterol's tendency to lower the line tension between lipid domain boundaries, while maintaining Mini-B's ability to cause reversible collapse resulting in the formation of surface associated reservoirs. Our results also show that lowering the line tension between domains can adversely impact monolayer folding mechanisms. We propose that small amounts of cholesterol and synthetic protein Mini-B can together achieve the seemingly opposing requirements of efficient LS: fluid enough to flow at the air-water interface, while being rigid enough to oppose irreversible collapse at ultra-low surface tensions.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Peptídeos/química , Proteína B Associada a Surfactante Pulmonar/química , 1,2-Dipalmitoilfosfatidilcolina/química , Ar , Pulmão/química , Membranas Artificiais , Peptídeos/síntese química , Fosfatidilgliceróis/química , Proteína B Associada a Surfactante Pulmonar/síntese química , Propriedades de Superfície , Tensão Superficial , Água/química
11.
Biochim Biophys Acta ; 1858(12): 3113-3119, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27664499

RESUMO

Surfactant protein B (SP-B; 79 residues) is a member of the saposin superfamily and plays a pivotal role in lung function. The N- and C-terminal regions of SP-B, cross-linked by two disulfides, were theoretically predicted to fold as charged amphipathic helices, suggesting participation in surfactant activities. Previous studies with oxidized Super Mini-B (SMB), a construct based on the N- and C-regions of SP-B (i.e., residues 1-25 and 63-78) joined with a designer turn (-PKGG-) and two disulfides, indicated that freshly prepared SMB in lipids folded as a surface active, α-helix-hairpin. Because other peptides modeled on α-helical SP domains lost helicity and surfactant activity on storage, experiments were here performed on oxidized SMB in surfactant liposomes stored at ~2-8°C for ≤5.5years. Captive bubble surfactometry confirmed low minimum surface tensions for fresh and stored SMB preparations. FTIR spectroscopy of fresh and stored SMB formulations showed secondary structures compatible with the peptide folding as α-helix-hairpin. A homology (I-TASSER) model of oxidized SMB demonstrated a globular protein, exhibiting a core of hydrophobic residues and a surface of polar residues. Since mass spectroscopy indicated that the disulfides were maintained on storage, the stability of SMB may be partly due to the disulfides bringing the N- and C-α-helices closer. Mass spectroscopy of stored SMB preparations showed some methionine oxidation, and also partial deacylation of surfactant phospholipids to form lyso-derivatives. However, the stable conformation and activity of stored SMB surfactant suggest that the active helix-hairpin resists these chemical changes which otherwise may lead to surfactant inhibition.


Assuntos
Lipossomos/química , Proteína B Associada a Surfactante Pulmonar/química , Dissulfetos/química , Lipídeos/análise , Peso Molecular , Estabilidade Proteica , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Biophys J ; 111(10): 2176-2189, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27851941

RESUMO

Antimicrobial peptides (AMPs) are a class of host-defense molecules that neutralize a broad range of pathogens. Their membrane-permeabilizing behavior has been commonly attributed to the formation of pores; however, with the continuing discovery of AMPs, many are uncharacterized and their exact mechanism remains unknown. Using atomic force microscopy, we previously characterized the disruption of model membranes by protegrin-1 (PG-1), a cationic AMP from pig leukocytes. When incubated with zwitterionic membranes of dimyristoylphosphocholine, PG-1 first induced edge instability at low concentrations, then porous defects at intermediate concentrations, and finally worm-like micelle structures at high concentrations. These rich structural changes suggested that pore formation constitutes only an intermediate state along the route of PG-1's membrane disruption process. The formation of these structures could be best understood by using a mesophase framework of a binary mixture of lipids and peptides, where PG-1 acts as a line-active agent in lowering interfacial bilayer tensions. We have proposed that rather than being static pore formers, AMPs share a common ability to lower interfacial tensions that promote membrane transformations. In a study of 13 different AMPs, we found that peptide line-active behavior was not driven by the overall charge, and instead was correlated with their adoption of imperfect secondary structures. These peptide structures commonly positioned charged residues near the membrane interface to promote deformation favorable for their incorporation into the membrane. Uniquely, the data showed that barrel-stave-forming peptides such as alamethicin are not line-active, and that the seemingly disparate models of toroidal pores and carpet activity are actually related. We speculate that this interplay between peptide structure and the distribution of polar residues in relation to the membrane governs AMP line activity in general and represents a novel, to our knowledge, avenue for the rational design of new drugs.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Dinâmica não Linear , Porosidade , Ligação Proteica , Suínos
13.
Infect Immun ; 84(2): 459-66, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26597988

RESUMO

Staphylococcus aureus uses the two-component regulatory system GraRS to sense and respond to host defense peptides (HDPs). However, the mechanistic impact of GraS or its extracellular sensing loop (EL) on HDP resistance is essentially unexplored. Strains with null mutations in the GraS holoprotein (ΔgraS) or its EL (ΔEL) were compared for mechanisms of resistance to HDPs of relevant immune sources: neutrophil α-defensin (human neutrophil peptide 1 [hNP-1]), cutaneous ß-defensin (human ß-defensin 2 [hBD-2]), or the platelet kinocidin congener RP-1. Actions studied by flow cytometry included energetics (ENR); membrane permeabilization (PRM); annexin V binding (ANX), and cell death protease activation (CDP). Assay conditions simulated bloodstream (pH 7.5) or phagolysosomal (pH 5.5) pH contexts. S. aureus strains were more susceptible to HDPs at pH 7.5 than at pH 5.5, and each HDP exerted a distinct effect signature. The impacts of ΔgraS and ΔΕL on HDP resistance were peptide and pH dependent. Both mutants exhibited defects in ANX response to hNP-1 or hBD-2 at pH 7.5, but only hNP-1 did so at pH 5.5. Both mutants exhibited hyper-PRM, -ANX, and -CDP responses to RP-1 at both pHs and hypo-ENR at pH 5.5. The actions correlated with ΔgraS or ΔΕL hypersusceptibility to hNP-1 or RP-1 (but not hBD-2) at pH 7.5 and to all study HDPs at pH 5.5. An exogenous EL mimic protected mutant strains from hNP-1 and hBD-2 but not RP-1, indicating that GraS and its EL play nonredundant roles in S. aureus survival responses to specific HDPs. These findings suggest that GraS mediates specific resistance countermeasures to HDPs in immune contexts that are highly relevant to S. aureus pathogenesis in humans.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Staphylococcus aureus/metabolismo , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana , Humanos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade
14.
Bioorg Med Chem Lett ; 25(20): 4419-27, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26384289

RESUMO

A small library of monovalent and bivalent Smac mimics was synthesized based on 2 types of monomers, with general structure NMeAla-Xaa-Pro-BHA (Xaa=Cys or Lys). Position 2 of the compounds was utilized to dimerize both types of monomers employing various bis-reactive linkers, as well as to modify selected compounds with lipids. The resulting library was screened in vitro against metastatic human breast cancer cell line MDA-MB-231, and the two most active compounds selected for in vivo studies. The most active lipid-conjugated analogue M11, showed in vivo activity while administered both subcutaneously and orally. Collectively, our findings suggest that lipidation may be a viable approach in the development of new Smac-based therapeutic leads.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/química , Lipídeos/química , Proteínas Mitocondriais/química , Animais , Antineoplásicos/síntese química , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas Mitocondriais/metabolismo , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade
15.
Exp Lung Res ; 41(5): 293-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26052829

RESUMO

PURPOSE OF THE STUDY: Alveolar-capillary leakage of proteinaceous fluid impairs alveolar ventilation and surfactant function and decreases lung compliance in acute lung injury. We investigated the correlation between lung function and total protein levels in bronchoalveolar lavage fluid (BALF) of ventilated, lavaged surfactant-deficient rabbits treated with various clinical and synthetic lung surfactant preparations. MATERIALS AND METHODS: 109 ventilated, young adult New Zealand White rabbits underwent lung lavage to induce surfactant-deficiency (PaO2 <100 torr in 100% O2), were treated with a clinical surfactant or a synthetic surfactant preparation with surfactant protein B (SP-B) and/or surfactant protein C (SP-C) analogs, and mechanically ventilated for 120 min. Total protein levels in postmortem BALF were correlated with arterial PO2 (PaO2) and dynamic lung compliance values at 120 min post-surfactant treatment. RESULTS: Repeated lung lavages decreased mean PaO2 values from 540 to 58 torr and lung compliance from 0.64 to 0.33 mL/kg/cm H2O. Two hours after surfactant therapy and mechanical ventilation, mean PaO2 values had increased to 346 torr and lung compliance to 0.44 mL/kg/cm H2O. Eighty-six rabbits (79%) responded to surfactant therapy with an increase in PaO2 to values >200 torr. Fourteen non-responders received inactive surfactant preparations. BALF protein levels were inversely correlated with PaO2 and lung compliance (P < .001). Surfactant preparations containing both SP-B and SP-C proteins or peptide analogs outperformed single protein/peptide preparations. CONCLUSIONS: Clinical and synthetic surfactant therapy reduces alveolar-capillary protein leakage in surfactant-deficient rabbits. Surfactant preparations with both SP-B and SP-C (analogs) were more efficient than preparations with SP-B or SP-C alone.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Proteínas/metabolismo , Alvéolos Pulmonares/efeitos dos fármacos , Surfactantes Pulmonares/farmacologia , Animais , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Complacência Pulmonar/efeitos dos fármacos , Oxigênio/metabolismo , Peptídeos/metabolismo , Alvéolos Pulmonares/metabolismo , Coelhos , Respiração Artificial/métodos
16.
Infect Immun ; 82(12): 5336-45, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25287929

RESUMO

The Staphylococcus aureus two-component regulatory system, GraRS, is involved in resistance to killing by distinct host defense cationic antimicrobial peptides (HD-CAPs). It is believed to regulate downstream target genes such as mprF and dltABCD to modify the S. aureus surface charge. However, the detailed mechanism(s) by which the histidine kinase, GraS, senses specific HD-CAPs is not well defined. Here, we studied a well-characterized clinical methicillin-resistant S. aureus (MRSA) strain (MW2), its isogenic graS deletion mutant (ΔgraS strain), a nonameric extracellular loop mutant (ΔEL strain), and four residue-specific ΔEL mutants (D37A, P39A, P39S, and D35G D37G D41G strains). The ΔgraS and ΔEL strains were unable to induce mprF and dltA expression and, in turn, demonstrated significantly increased susceptibilities to daptomycin, polymyxin B, and two prototypical HD-CAPs (hNP-1 and RP-1). Further, P39A, P39S, and D35G-D37G-D41G ΔEL mutations correlated with moderate increases in HD-CAP susceptibility. Reductions of mprF and dltA induction by PMB were also found in the ΔEL mutants, suggesting these residues are pivotal to appropriate activation of the GraS sensor kinase. Importantly, a synthetic exogenous soluble EL mimic of GraS protected the parental MW2 strain against hNP-1- and RP-1-mediated killing, suggesting a direct interaction of the EL with HD-CAPs in GraS activation. In vivo, the ΔgraS and ΔEL strains displayed dramatic reductions in achieved target tissue MRSA counts in an endocarditis model. Taken together, our results provide new insights into potential roles of GraS in S. aureus sensing of HD-CAPs to induce adaptive survival responses to these molecules.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Proteínas Quinases/metabolismo , Estresse Fisiológico , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Endocardite/microbiologia , Endocardite/patologia , Feminino , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Quinases/genética , Coelhos , Deleção de Sequência
17.
Bioorg Med Chem Lett ; 24(6): 1452-7, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24582479

RESUMO

A small library of monovalent Smac mimics with general structure NMeAla-Tle-(4R)-4-Benzyl-Pro-Xaa-cysteamide, was synthesized (Xaa=hydrophobic residue). The library was screened in vitro against human breast cancer cell lines MCF-7 and MDA-MB-231, and two most active compounds oligomerized via S-alkylation giving bivalent and trivalent derivatives. The most active bivalent analogue SMAC17-2X was tested in vivo and in physiological conditions (mouse model) it exerted a potent anticancer effect resulting in ∼23.4days of tumor growth delay at 7.5mg/kg dose. Collectively, our findings suggest that bivalent Smac analogs obtained via S-alkylation protocol may be a suitable platform for the development of new anticancer therapeutics.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dimerização , Feminino , Humanos , Células MCF-7 , Camundongos , Oligopeptídeos/uso terapêutico
18.
Biomedicines ; 12(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38255268

RESUMO

Lung surfactant is a mixture of lipids and proteins and is essential for air breathing in mammals. The hydrophobic surfactant proteins B and C (SP-B and SP-C) assist in reducing surface tension in the lung alveoli by organizing the surfactant lipids. SP-B deficiency is life-threatening, and a lack of SP-C can lead to progressive interstitial lung disease. B-YL (41 amino acids) is a highly surface-active, sulfur-free peptide mimic of SP-B (79 amino acids) in which the four cysteine residues are replaced by tyrosine. Mammalian SP-C (35 amino acids) contains two cysteine-linked palmitoyl groups at positions 5 and 6 in the N-terminal region that override the ß-sheet propensities of the native sequence. Canine SP-C (34 amino acids) is exceptional because it has only one palmitoylated cysteine residue at position 4 and a phenylalanine at position 5. We developed canine SP-C constructs in which the palmitoylated cysteine residue at position 4 is replaced by phenylalanine (SP-Cff) or serine (SP-Csf) and a glutamic acid-lysine ion-lock was placed at sequence positions 20-24 of the hydrophobic helical domain to enhance its alpha helical propensity. AI modeling, molecular dynamics, circular dichroism spectroscopy, Fourier Transform InfraRed spectroscopy, and electron spin resonance studies showed that the secondary structure of canine SP-Cff ion-lock peptide was like that of native SP-C, suggesting that substitution of phenylalanine for cysteine has no apparent effect on the secondary structure of the peptide. Captive bubble surfactometry demonstrated higher surface activity for canine SP-Cff ion-lock peptide in combination with B-YL in surfactant lipids than with canine SP-Csf ion-lock peptide. These studies demonstrate the potential of canine SP-Cff ion-lock peptide to enhance the functionality of the SP-B peptide mimic B-YL in synthetic surfactant lipids.

19.
Biophys J ; 105(10): 2333-42, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24268145

RESUMO

Domain formation in bacteria-mimetic membranes due to cationic peptide binding was recently proposed based on calorimetric data. We now use (2)H solid-state NMR to critically examine the presence and absence of domains in bacterial membranes containing zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE) and anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) lipids. Chain-perdeuterated POPE and POPG are used in single-component membranes, binary POPE/POPG (3:1) membranes, and membranes containing one of four cationic peptides: two antimicrobial peptides (AMPs) of the ß-hairpin family of protegrin-1 (PG-1), and two cell-penetrating peptides (CPPs), HIV TAT and penetratin. (2)H quadrupolar couplings were measured to determine the motional amplitudes of POPE and POPG acyl chains as a function of temperature. Homogeneously mixed POPE/POPG membranes should give the same quadrupolar couplings for the two lipids, whereas the presence of membrane domains enriched in one of the two lipids should cause distinct (2)H quadrupolar couplings that reflect different chain disorder. At physiological temperature (308 K), we observed no or only small coupling differences between POPE and POPG in the presence of any of the cationic peptides. However, around ambient temperature (293 K), at which gel- and liquid-crystalline phases coexist in the peptide-free POPE/POPG membrane, the peptides caused distinct quadrupolar couplings for the two lipids, indicating domain formation. The broad-spectrum antimicrobial peptide PG-1 ordered ∼40% of the POPE lipids while disordering POPG. The Gram-negative selective PG-1 mutant, IB549, caused even larger differences in the POPE and POPG disorder: ∼80% of POPE partitioned into the ordered phase, whereas all of the POPG remained in the disordered phase. In comparison, TAT rigidified POPE and POPG similarly in the binary membrane at ambient temperature, indicating that TAT does not cause dynamic heterogeneity but interacts with the membrane with a different mechanism. Penetratin maintained the POPE order but disordered POPG, suggesting moderate domain separation. These results provide insight into the extent of domain formation in bacterial membranes and the possible peptide structural requirements for this phenomenon.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/citologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacologia , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Transporte/química , Proteínas de Transporte/farmacologia , Peptídeos Penetradores de Células/química , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Temperatura , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia
20.
Biochim Biophys Acta ; 1818(2): 194-204, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22100601

RESUMO

It has long been suggested that pore formation is responsible for the increase in membrane permeability by antimicrobial peptides (AMPs). To better understand the mechanism of AMP activity, the disruption of model membrane by protegrin-1 (PG-1), a cationic antimicrobial peptide, was studied using atomic force microscopy. We present here the direct visualization of the full range of structural transformations in supported lipid bilayer patches induced by PG-1 on zwitterionic 1,2-dimyristoyl-snglycero-phospho-choline (DMPC) membranes. When PG-1 is added to DMPC, the peptide first induces edge instability at low concentrations, then pore-like surface defects at intermediate concentrations, and finally wormlike structures with a specific length scale at high concentrations. The formation of these structures can be understood using a mesophase framework of a binary mixture of lipids and peptides, where PG-1 acts as a line-active agent. Atomistic molecular dynamics simulations on lipid bilayer ribbons with PG-1 molecules placed at the edge or interior positions are carried out to calculate the effect of PG-1 in reducing line tension. Further investigation of the placement of PG-1 and its association with defects in the bilayer is carried out using unbiased assembly of a PG-1 containing bilayer from a random mixture of PG-1, DMPC, and water. A generalized model of AMP induced structural transformations is also presented in this work. This article is part of a Special Issue entitled: Membrane protein structure and function.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Lipídeos de Membrana , Dados de Sequência Molecular , Estrutura Molecular , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA