Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768452

RESUMO

The development of surgical techniques, immunosuppressive strategies and new organ preservation methods have meant that transplant centers have to face the problem of an insufficient number of organs for transplantation concerning the constantly growing demand. Therefore, using organs from expanded criteria donors and developing new analytical solutions to find parameters or compounds that would allow a more efficient assessment of organ quality before transplantation are options for meeting this challenge. This study proposed bile metabolomic analysis to evaluate liver metabolism and biliary tract function depending on the organ preservation method and degree of warm ischemia time. The analyses were performed on solid-phase microextraction-prepared bile samples from porcine model donors with mild (heart beating donor [HBD]) and moderate warm ischemia (donation after circulatory death [DCD]) grafts subjected to static cold storage (SCS) or normothermic ex vivo liver perfusion (NEVLP) before transplantation. Bile produced in the SCS-preserved livers was characterized by increased levels of metabolites such as chenodeoxycholic acid, arachidonic acid and 5S-hydroxyeicosatetraeonic acid, as well as saturated and monounsaturated lysophosphatidylcholines (LPC). Such changes may be associated with differences in the bile acid synthesis pathways and organ inflammation. Moreover, it has been shown that NEVLP reduced the negative effect of ischemia on organ function. A linear relationship was observed between levels of lipids from the LPC group and the time of organ ischemia. This study identified metabolites worth considering as potential markers of changes occurring in preserved grafts.


Assuntos
Sistema Biliar , Transplante de Fígado , Traumatismo por Reperfusão , Suínos , Animais , Preservação de Órgãos/métodos , Transplante de Fígado/métodos , Traumatismo por Reperfusão/metabolismo , Perfusão/métodos , Sistema Biliar/metabolismo , Fígado/metabolismo , Isquemia/metabolismo , Isquemia Quente , Metaboloma
2.
Molecules ; 26(8)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920347

RESUMO

Bladder cancer (BC) is a common malignancy of the urinary system and a leading cause of death worldwide. In this work, untargeted metabolomic profiling of biological fluids is presented as a non-invasive tool for bladder cancer biomarker discovery as a first step towards developing superior methods for detection, treatment, and prevention well as to further our current understanding of this disease. In this study, urine samples from 24 healthy volunteers and 24 BC patients were subjected to metabolomic profiling using high throughput solid-phase microextraction (SPME) in thin-film format and reversed-phase high-performance liquid chromatography coupled with a Q Exactive Focus Orbitrap mass spectrometer. The chemometric analysis enabled the selection of metabolites contributing to the observed separation of BC patients from the control group. Relevant differences were demonstrated for phenylalanine metabolism compounds, i.e., benzoic acid, hippuric acid, and 4-hydroxycinnamic acid. Furthermore, compounds involved in the metabolism of histidine, beta-alanine, and glycerophospholipids were also identified. Thin-film SPME can be efficiently used as an alternative approach to other traditional urine sample preparation methods, demonstrating the SPME technique as a simple and efficient tool for urinary metabolomics research. Moreover, this study's results may support a better understanding of bladder cancer development and progression mechanisms.


Assuntos
Metaboloma , Metabolômica/métodos , Neoplasias da Bexiga Urinária/urina , Idoso , Ácido Benzoico/urina , Estudos de Casos e Controles , Cromatografia Líquida , Ácidos Cumáricos/urina , Feminino , Glicerofosfolipídeos/urina , Hipuratos/urina , Histidina/urina , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Fenilalanina/metabolismo , Microextração em Fase Sólida/métodos , Espectrometria de Massas em Tandem , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/patologia , beta-Alanina/urina
3.
J Sep Sci ; 43(9-10): 1867-1878, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32068348

RESUMO

The limiting factor in conventional quality assessments of transplanted organs, namely the invasiveness of tissue sample collection, has prompted much research on the field of transplantology to focus on the development of alternative evaluation methods of organ quality. In the present project, we undertake the challenge to address the need for a new analytical solution for graft quality assessments by using a novel metabolomic diagnostic protocol based on low-invasive solid-phase microextraction. Solid-phase microextraction probes of ca. 0.2 mm coated with 4 mm long mixed-mode extraction phase were inserted into rabbit kidneys immediately following euthanasia and after 2, 4, 6, and 21 h of preservation. Liquid chromatography-mass spectrometry analysis of the extracts was performed with the use of a reversed phase column and a Q-Exactive Focus mass spectrometer operated in positive ionization mode. Statistical analysis of significantly changing compounds revealed metabolic profile changes in kidneys induced by ischemia and oxidative stress as a function of the duration of cold storage. The most pronounced alterations were reflected in levels of essential amino acids and purine nucleosides. Our findings demonstrate that the proposed approach may be successfully used to monitor changes in the metabolic profile of organs over time of preservation.


Assuntos
Isquemia/metabolismo , Rim/metabolismo , Microextração em Fase Sólida , Aminoácidos/análise , Animais , Cromatografia Líquida , Isquemia/patologia , Rim/patologia , Espectrometria de Massas , Estresse Oxidativo , Nucleosídeos de Purina/análise , Coelhos
4.
Anal Chim Acta ; 1312: 342758, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834268

RESUMO

BACKGROUND: The selection of the sample treatment strategy is a crucial step in the metabolomics workflow. Solid phase microextraction (SPME) is a sample processing methodology with great potential for use in untargeted metabolomics of tissue samples. However, its utilization is not as widespread as other standard protocols involving steps of tissue collection, metabolism quenching, homogenization, and extraction of metabolites by solvents. Since SPME allows us to perform all these steps in one action in tissue samples, in addition to other advantages, it is necessary to know whether this methodology produces similar or comparable metabolome and lipidome coverage and performance to classical methods. RESULTS: SPME and homogenization with solid-liquid extraction (Homo-SLE) sample treatment methods were applied to healthy murine kidney tissue, followed by comprehensive metabolomics and lipidomics analyses. In addition, it has been tested whether freezing and storage of the tissue causes alterations in the renal metabolome and lipidome, so the analyses were performed on fresh and frozen tissue samples Lipidomics analysis revealed the exclusive presence of different structural membrane and intracellular lipids in the Homo-SLE group. Conversely, all annotated metabolites were detected in both groups. Notably, the freezing of the sample mainly causes a decrease in the levels of most lipid species and an increase in metabolites such as amino acids, purines, and pyrimidines. These alterations are principally detected in a statistically significant way by SPME methodology. Finally, the samples of both methodologies show a positive correlation in all the analyses. SIGNIFICANCE: These results demonstrate that in SPME processing, as long as the fundamentals of non-exhaustive extraction in a pre-equilibrium kinetic regime, extraction in a tissue localized area, the chemistry of the fiber coating and non-homogenization of the tissue are taken into account, is an excellent method to use in kidney tissue metabolomics; since this methodology presents an easy-to-use, efficient, and less invasive approach that simplifies the different sample processing steps.


Assuntos
Rim , Metabolômica , Microextração em Fase Sólida , Microextração em Fase Sólida/métodos , Animais , Metabolômica/métodos , Rim/metabolismo , Rim/química , Camundongos , Extração Líquido-Líquido/métodos , Metaboloma , Masculino , Camundongos Endogâmicos C57BL
5.
Transl Res ; 267: 79-90, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38052298

RESUMO

Transplant centers are currently facing a lack of tools to ensure adequate evaluation of the quality of the available organs, as well as a significant shortage of kidney donors. Therefore, efforts are being made to facilitate the effective use of available organs and expand the donor pool, particularly with expanded criteria donors. Fulfilling a need, we aim to present an innovative analytical method based on solid-phase microextraction (SPME) - chemical biopsy. In order to track changes affecting the organ throughout the entire transplant procedure, porcine kidneys were subjected to multiple samplings at various time points. The application of small-diameter SPME probes assured the minimal invasiveness of the procedure. Porcine model kidney autotransplantation was executed for the purpose of simulating two types of donor scenarios: donors with a beating heart (HBD) and donors after cardiac death (DCD). All renal grafts were exposed to continuous normothermic ex vivo perfusion. Following metabolomic and lipidomic profiling using high-performance liquid chromatography coupled to a mass spectrometer, we observed differences in the profiles of HBD and DCD kidneys. The alterations were predominantly related to energy and glucose metabolism, and differences in the levels of essential amino acids, purine nucleosides, lysophosphocholines, phosphoethanolamines, and triacylglycerols were noticed. Our results indicate the potential of implementing chemical biopsy in the evaluation of graft quality and monitoring of renal function during perfusion.


Assuntos
Rim , Lipidômica , Suínos , Animais , Humanos , Doadores de Tecidos , Morte , Perfusão/métodos , Sobrevivência de Enxerto
6.
Front Mol Biosci ; 11: 1341108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784665

RESUMO

Introduction: Normothermic ex vivo kidney perfusion (NEVKP) is designed to replicate physiological conditions to improve graft outcomes. A comparison of the impact of hypothermic and normothermic preservation techniques on graft quality was performed by lipidomic profiling using solid-phase microextraction (SPME) chemical biopsy as a minimally invasive sampling approach. Methods: Direct kidney sampling was conducted using SPME probes coated with a mixed-mode extraction phase in a porcine autotransplantation model of the renal donor after cardiac death, comparing three preservation methods: static cold storage (SCS), NEVKP, and hypothermic machine perfusion (HMP). The lipidomic analysis was done using ultra-high-performance liquid chromatography coupled with a Q-Exactive Focus Orbitrap mass spectrometer. Results: Chemometric analysis showed that the NEVLP group was separated from SCS and HMP groups. Further in-depth analyses indicated significantly (p < 0.05, VIP > 1) higher levels of acylcarnitines, phosphocholines, ether-linked and longer-chain phosphoethanolamines, triacylglycerols and most lysophosphocholines and lysophosphoethanolamines in the hypothermic preservation group. The results showed that the preservation temperature has a more significant impact on the lipidomic profile of the kidney than the preservation method's mechanical characteristics. Conclusion: Higher levels of lipids detected in the hypothermic preservation group may be related to ischemia-reperfusion injury, mitochondrial dysfunction, pro-inflammatory effect, and oxidative stress. Obtained results suggest the NEVKP method's beneficial effect on graft function and confirm that SPME chemical biopsy enables low-invasive and repeated sampling of the same tissue, allowing tracking alterations in the graft throughout the entire transplantation procedure.

7.
J Clin Med ; 11(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35159939

RESUMO

The number of patients placed on kidney transplant waiting lists is rapidly increasing, resulting in a growing gap between organ demand and the availability of kidneys for transplantation. This organ shortage has forced medical professionals to utilize marginal kidneys from expanded criteria donors (ECD) to broaden the donor pool and shorten wait times for patients with end-stage renal disease. However, recipients of ECD kidney grafts tend to have worse outcomes compared to those receiving organs from standard criteria donors (SCD), specifically increased risks of delayed graft function (DGF) and primary nonfunction incidence. Thus, representative methods for graft-quality assessment are strongly needed, especially for ECDs. Currently, graft-quality evaluation is limited to interpreting the donor's recent laboratory tests, clinical risk scores, the visual evaluation of the organ, and, in some cases, a biopsy and perfusion parameters. The last few years have seen the emergence of many new technologies designed to examine organ function, including new imaging techniques, transcriptomics, genomics, proteomics, metabolomics, lipidomics, and new solutions in organ perfusion, which has enabled a deeper understanding of the complex mechanisms associated with ischemia-reperfusion injury (IRI), inflammatory process, and graft rejection. This review summarizes and assesses the strengths and weaknesses of current conventional diagnostic methods and a wide range of new potential strategies (from the last five years) with respect to donor graft-quality assessment, the identification of IRI, perfusion control, and the prediction of DGF.

8.
Front Mol Biosci ; 9: 1019290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330222

RESUMO

Currently used methods for diagnosing ventilator-associated pneumonia (VAP) are complex, time-consuming and require invasive procedures while empirical antibacterial therapy applies broad spectrum antibiotics that may promote antimicrobial resistance. Hence, novel and fast methods based on alternative markers are needed for VAP detection and differentiation of causative pathogens. Pathogenic bacteria produce a broad range of volatile organic compounds (VOCs), some of which may potentially serve as biomarkers for microorganism identification. Additionally, monitoring of dynamically changing VOCs concentration profiles may indicate emerging pneumonia and allow timely implementation of appropriate antimicrobial treatment. This study substantially extends the knowledge on bacterial metabolites providing the unambiguous identification of volatile metabolites produced by carbapenem-resistant and susceptible strains of Klebsiella pneumoniae (confirmed with pure standards in addition to mass spectra match) but also revealing their temporary concentration profiles (along the course of pathogen proliferation) and dependence on the addition of antibiotic (imipenem) to bacteria. Furthermore, the clinical strains of K. pneumoniae isolated from bronchoalveolar lavage specimens collected from mechanically ventilated patients were investigated to reveal, whether bacterial metabolites observed in model experiments with reference strains could be relevant for wild pathogens as well. In all experiments, the headspace samples from bacteria cultures were collected on multibed sorption tubes and analyzed by GC-MS. Sampling was done under strictly controlled conditions at seven time points (up to 24 h after bacteria inoculation) to follow the dynamic changes in VOC concentrations, revealing three profiles: release proportional to bacteria load, temporary maximum and uptake. Altogether 32 VOCs were released by susceptible and 25 VOCs by resistant strain, amongst which 2-pentanone, 2-heptanone, and 2-nonanone were significantly higher for carbapenem-resistant KPN. Considerably more metabolites (n = 64) were produced by clinical isolates and in higher diversity compared to reference KPN strains.

9.
J Vis Exp ; (160)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32628165

RESUMO

Kidney transplantation is a life-saving treatment for a large number of people with end-stage renal dysfunction worldwide. The procedure is associated with an increased survival rate and greater quality of patient's life when compared to conventional dialysis. Regrettably, transplantology suffers from a lack of reliable methods for organ quality assessment. Standard diagnostic techniques are limited to macroscopic appearance inspection or invasive tissue biopsy, which do not provide comprehensive information about the graft. The proposed protocol aims to introduce solid phase microextraction (SPME) as an ideal analytical method for comprehensive metabolomics and lipidomic analysis of all low molecular compounds present in kidneys allocated for transplantation. The small size of the SPME probe enables performance of a chemical biopsy, which enables extraction of metabolites directly from the organ without any tissue collection. The minimum invasiveness of the method permits execution of multiple analyses over time: directly after organ harvesting, during its preservation, and immediately after revascularization at the recipient's body. It is hypothesized that the combination of this novel sampling method with a high-resolution mass spectrometer will allow for discrimination of a set of characteristic compounds that could serve as biological markers of graft quality and indicators of possible development of organ dysfunction.


Assuntos
Transplante de Rim/normas , Metabolômica , Animais , Biópsia , Cromatografia Líquida , Lipidômica , Espectrometria de Massas , Análise de Componente Principal , Controle de Qualidade , Microextração em Fase Sólida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA