Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Am J Physiol Cell Physiol ; 322(3): C521-C545, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35138178

RESUMO

Nicotinamide adenine dinucleotide (NAD) acts as a cofactor in several oxidation-reduction (redox) reactions and is a substrate for a number of nonredox enzymes. NAD is fundamental to a variety of cellular processes including energy metabolism, cell signaling, and epigenetics. NAD homeostasis appears to be of paramount importance to health span and longevity, and its dysregulation is associated with multiple diseases. NAD metabolism is dynamic and maintained by synthesis and degradation. The enzyme CD38, one of the main NAD-consuming enzymes, is a key component of NAD homeostasis. The majority of CD38 is localized in the plasma membrane with its catalytic domain facing the extracellular environment, likely for the purpose of controlling systemic levels of NAD. Several cell types express CD38, but its expression predominates on endothelial cells and immune cells capable of infiltrating organs and tissues. Here we review potential roles of CD38 in health and disease and postulate ways in which CD38 dysregulation causes changes in NAD homeostasis and contributes to the pathophysiology of multiple conditions. Indeed, in animal models the development of infectious diseases, autoimmune disorders, fibrosis, metabolic diseases, and age-associated diseases including cancer, heart disease, and neurodegeneration are associated with altered CD38 enzymatic activity. Many of these conditions are modified in CD38-deficient mice or by blocking CD38 NADase activity. In diseases in which CD38 appears to play a role, CD38-dependent NAD decline is often a common denominator of pathophysiology. Thus, understanding dysregulation of NAD homeostasis by CD38 may open new avenues for the treatment of human diseases.


Assuntos
Glicosídeo Hidrolases , NAD , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Animais , Células Endoteliais/metabolismo , Camundongos , NAD/metabolismo , NAD+ Nucleosidase/metabolismo
2.
Biochem Biophys Res Commun ; 513(2): 486-493, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30975470

RESUMO

Tissue nicotinamide adenine dinucleotide (NAD+) decline has been implicated in aging. We have recently identified CD38 as a central regulator involved in tissue NAD+ decline during the aging process. CD38 is an ecto-enzyme highly expressed in endothelial and inflammatory cells. To date, the mechanisms that regulate CD38 expression in aging tissues characterized by the presence of senescent cells is not completely understood. Cellular senescence has been described as a hallmark of the aging process and these cells are known to secrete several factors including cytokines and chemokines through their senescent associated secretory phenotype (SASP). Here we investigated if the cellular senescence phenotype is involved in the regulation of CD38 expression and its NADase activity. We observed that senescent cells do not have high expression of CD38. However, the SASP factors secreted by senescent cells induced CD38 mRNA and protein expression and increased CD38-NADase activity in non-senescent cells such as endothelial cells or bone marrow derived macrophages. Our data suggest a link between cellular senescence and NAD+ decline in which SASP-mediated upregulation of CD38 can disrupt cellular NAD+ homeostasis.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Senescência Celular , NAD/metabolismo , ADP-Ribosil Ciclase 1/análise , Envelhecimento , Animais , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
3.
Am J Physiol Renal Physiol ; 310(5): F372-84, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26661648

RESUMO

Renovascular hypertension (RVH) is a common cause of both cardiovascular and renal morbidity and mortality. In renal artery stenosis (RAS), atrophy in the stenotic kidney is associated with an influx of macrophages and other mononuclear cells. We tested the hypothesis that chemokine receptor 2 (CCR2) inhibition would reduce chronic renal injury by reducing macrophage influx in the stenotic kidney of mice with RAS. We employed a well-established murine model of RVH to define the relationship between macrophage infiltration and development of renal atrophy in the stenotic kidney. To determine the role of chemokine ligand 2 (CCL2)/CCR2 signaling in the development of renal atrophy, mice were treated with the CCR2 inhibitor RS-102895 at the time of RAS surgery and followed for 4 wk. Renal tubular epithelial cells expressed CCL2 by 3 days following surgery, a time at which no significant light microscopic alterations, including interstitial inflammation, were identified. Macrophage influx increased with time following surgery. At 4 wk, the development of severe renal atrophy was accompanied by an influx of inducible nitric oxide synthase (iNOS)+ and CD206+ macrophages that coexpressed F4/80, with a modest increase in macrophages coexpressing arginase 1 and F4/80. The CCR2 inhibitor RS-102895 attenuated renal atrophy and significantly reduced the number of dual-stained F4/80+ iNOS+ and F4/80+ CD206+ but not F4/80+ arginase 1+ macrophages. CCR2 inhibition reduces iNOS+ and CD206+ macrophage accumulation that coexpress F4/80 and renal atrophy in experimental renal artery stenosis. CCR2 blockade may provide a novel therapeutic approach to humans with RVH.


Assuntos
Benzoxazinas/farmacologia , Quimiocina CCL2/metabolismo , Hipertensão Renovascular/tratamento farmacológico , Rim/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Piperidinas/farmacologia , Substâncias Protetoras/farmacologia , Receptores CCR2/antagonistas & inibidores , Obstrução da Artéria Renal/tratamento farmacológico , Animais , Antígenos de Diferenciação/metabolismo , Arginase/metabolismo , Atrofia , Quimiocina CCL2/genética , Citoproteção , Modelos Animais de Doenças , Hipertensão Renovascular/genética , Hipertensão Renovascular/metabolismo , Hipertensão Renovascular/patologia , Rim/metabolismo , Rim/patologia , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Terapia de Alvo Molecular , Nefrite Intersticial/metabolismo , Nefrite Intersticial/patologia , Nefrite Intersticial/prevenção & controle , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores CCR2/metabolismo , Receptores de Superfície Celular/metabolismo , Obstrução da Artéria Renal/genética , Obstrução da Artéria Renal/metabolismo , Obstrução da Artéria Renal/patologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
4.
Cardiovasc Res ; 120(3): 286-300, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38271281

RESUMO

AIMS: Doxorubicin (DXR) is a chemotherapeutic agent that causes dose-dependent cardiotoxicity. Recently, it has been proposed that the NADase CD38 may play a role in doxorubicin-induced cardiotoxicity (DIC). CD38 is the main NAD+-catabolizing enzyme in mammalian tissues. Interestingly, in the heart, CD38 is mostly expressed as an ecto-enzyme that can be targeted by specific inhibitory antibodies. The goal of the present study is to characterize the role of CD38 ecto-enzymatic activity in cardiac metabolism and the development of DIC. METHODS AND RESULTS: Using both a transgenic animal model and a non-cytotoxic enzymatic anti-CD38 antibody, we investigated the role of CD38 and its ecto-NADase activity in DIC in pre-clinical models. First, we observed that DIC was prevented in the CD38 catalytically inactive (CD38-CI) transgenic mice. Both left ventricular systolic function and exercise capacity were decreased in wild-type but not in CD38-CI mice treated with DXR. Second, blocking CD38-NADase activity with the specific antibody 68 (Ab68) likewise protected mice against DIC and decreased DXR-related mortality by 50%. A reduction of DXR-induced mitochondrial dysfunction, energy deficiency, and inflammation gene expression were identified as the main mechanisms mediating the protective effects. CONCLUSION: NAD+-preserving strategies by inactivation of CD38 via a genetic or a pharmacological-based approach improve cardiac energetics and reduce cardiac inflammation and dysfunction otherwise seen in an acute DXR cardiotoxicity model.


Assuntos
NAD+ Nucleosidase , NAD , Camundongos , Animais , NAD+ Nucleosidase/metabolismo , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , NAD/metabolismo , Cardiotoxicidade , Camundongos Transgênicos , Doxorrubicina/toxicidade , Inflamação , Mamíferos/metabolismo
5.
Am J Physiol Renal Physiol ; 304(7): F938-47, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23364805

RESUMO

Renal artery stenosis (RAS) is an important cause of chronic renal dysfunction. Recent studies have underscored a critical role for CCL2 (MCP-1)-mediated inflammation in the progression of chronic renal damage in RAS and other chronic renal diseases. In vitro studies have implicated p38 MAPK as a critical intermediate for the production of CCL2. However, a potential role of p38 signaling in the development and progression of chronic renal disease in RAS has not been previously defined. We sought to test the hypothesis that inhibition of p38 MAPK ameliorates chronic renal injury in mice with RAS. We established a murine RAS model by placing a cuff on the right renal artery and treated mice with the p38 inhibitor SB203580 or vehicle for 2 wk. In mice treated with vehicle, the cuffed kidney developed interstitial fibrosis, tubular atrophy, and interstitial inflammation. In mice treated with SB203580, the RAS-induced renal atrophy was reduced (70% vs. 39%, P < 0.05). SB203580 also reduced interstitial inflammation and extracellular matrix deposition but had no effect on the development of hypertension. SB203580 partially blocked the induction of CCL2, CCL7 (MCP-3), CC chemokine receptor 2 (CCR2), and collagen 4 mRNA expression in the cuffed kidneys. In vitro, blockade of p38 hindered both TNF-α and TGF-ß-induced CCL2 upregulation. Based on these observations, we conclude that p38 MAPK plays a critical role in the induction of CCL2/CCL7/CCR2 system and the development of interstitial inflammation in RAS.


Assuntos
Quimiocina CCL2/biossíntese , Rim/metabolismo , Nefroesclerose/patologia , Obstrução da Artéria Renal/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Atrofia/patologia , Quimiocina CCL7/biossíntese , Modelos Animais de Doenças , Fibrose , Imidazóis/farmacologia , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piridinas/farmacologia , Receptores CCR2/biossíntese , Obstrução da Artéria Renal/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
6.
Mol Metab ; 67: 101652, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509362

RESUMO

Recent work has established associations between elevated p21, the accumulation of senescent cells, and skeletal muscle dysfunction in mice and humans. Using a mouse model of p21 overexpression (p21OE), we examined if p21 mechanistically contributes to cellular senescence and pathological features in skeletal muscle. We show that p21 induces several core properties of cellular senescence in skeletal muscle, including an altered transcriptome, DNA damage, mitochondrial dysfunction, and the senescence-associated secretory phenotype (SASP). Furthermore, p21OE mice exhibit manifestations of skeletal muscle pathology, such as atrophy, fibrosis, and impaired physical function when compared to age-matched controls. These findings suggest p21 alone is sufficient to drive a cellular senescence program and reveal a novel source of skeletal muscle loss and dysfunction.


Assuntos
Senescência Celular , Músculo Esquelético , Humanos , Senescência Celular/fisiologia
7.
Am J Physiol Renal Physiol ; 302(11): F1455-64, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22378822

RESUMO

Although the two-kidney, one-clip (2K1C) model is widely used as a model of human renovascular hypertension, mechanisms leading to the development of fibrosis and atrophy in the cuffed kidney and compensatory hyperplasia in the contralateral kidney have not been defined. Based on the well-established role of the transforming growth factor (TGF)-ß signaling pathway in renal fibrosis, we tested the hypothesis that abrogation of TGF-ß/Smad3 signaling would prevent fibrosis in the cuffed kidney. Renal artery stenosis (RAS) was established in mice with a targeted disruption of exon 2 of the Smad3 gene (Smad3 KO) and wild-type (WT) controls by placement of a polytetrafluoroethylene cuff on the right renal artery. Serial pulse-wave Doppler ultrasound assessments verified that blood flow through the cuffed renal artery was decreased to a similar extent in Smad3 KO and WT mice. Two weeks after surgery, systolic blood pressure and plasma renin activity were significantly elevated in both the Smad3 KO and WT mice. The cuffed kidney of WT mice developed renal atrophy (50% reduction in weight after 6 wk, P < 0.0001), which was associated with the development of interstitial fibrosis, tubular atrophy, and interstitial inflammation. Remarkably, despite a similar reduction of renal blood flow, the cuffed kidney of the Smad3 KO mice showed minimal atrophy (9% reduction in weight, P = not significant), with no significant histopathological alterations (interstitial fibrosis, tubular atrophy, and interstitial inflammation). We conclude that abrogation of TGF-ß/Smad3 signaling confers protection against the development of fibrosis and atrophy in RAS.


Assuntos
Hipertensão Renovascular/genética , Hipertensão Renovascular/patologia , Rim/patologia , Proteína Smad3/deficiência , Proteína Smad3/genética , Animais , Atrofia , Colágeno/biossíntese , Constrição Patológica , Fibrose , Imuno-Histoquímica , Testes de Função Renal , Camundongos , Mutação/genética , Mutação/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Obstrução da Artéria Renal/patologia , Circulação Renal/genética , Circulação Renal/fisiologia , Renina/sangue , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/biossíntese
8.
Front Immunol ; 13: 840246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281060

RESUMO

Nicotinamide adenine dinucleotide (NAD) metabolism plays an important role in the regulation of immune function. However, a complete picture of how NAD, its metabolites, precursors, and metabolizing enzymes work together in regulating immune function and inflammatory diseases is still not fully understood. Surprisingly, few studies have compared the effect of different forms of vitamin B3 on cellular functions. Therefore, we investigated the role of NAD boosting in the regulation of macrophage activation and function using different NAD precursors supplementation. We compared nicotinamide mononucleotide (NMN), nicotinamide riboside (NR), and nicotinamide (NAM) supplementation, with the recently described potent NAD precursor NRH. Our results show that only NRH supplementation strongly increased NAD+ levels in both bone marrow-derived and THP-1 macrophages. Importantly, NRH supplementation activated a pro-inflammatory phenotype in resting macrophages, inducing gene expression of several cytokines, chemokines, and enzymes. NRH also potentiated the effect of lipopolysaccharide (LPS) on macrophage activation and cytokine gene expression, suggesting that potent NAD+ precursors can promote inflammation in macrophages. The effect of NRH in NAD+ boosting and gene expression was blocked by inhibitors of adenosine kinase, equilibrative nucleoside transporters (ENT), and IκB kinase (IKK). Interestingly, the IKK inhibitor, BMS-345541, blocked the mRNA expression of several enzymes and transporters involved in the NAD boosting effect of NRH, indicating that IKK is also a regulator of NAD metabolism. In conclusion, NAD precursors such as NRH may be important tools to understand the role of NAD and NADH metabolism in the inflammatory process of other immune cells, and to reprogram immune cells to a pro-inflammatory phenotype, such as the M2 to M1 switch in macrophage reprogramming, in the cancer microenvironment.


Assuntos
NAD , Niacinamida , Citocinas , Glicosídeos , Macrófagos/metabolismo , NAD/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Fenótipo
9.
Aging Cell ; 21(4): e13589, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35263032

RESUMO

Nicotinamide adenine dinucleotide (NAD) levels decline during aging, contributing to physical and metabolic dysfunction. The NADase CD38 plays a key role in age-related NAD decline. Whether the inhibition of CD38 increases lifespan is not known. Here, we show that the CD38 inhibitor 78c increases lifespan and healthspan of naturally aged mice. In addition to a 10% increase in median survival, 78c improved exercise performance, endurance, and metabolic function in mice. The effects of 78c were different between sexes. Our study is the first to investigate the effect of CD38 inhibition in naturally aged animals.


Assuntos
Longevidade , NAD , ADP-Ribosil Ciclase 1/metabolismo , Envelhecimento/metabolismo , Animais , Camundongos , NAD/metabolismo , NAD+ Nucleosidase/metabolismo
10.
Front Endocrinol (Lausanne) ; 13: 896356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600581

RESUMO

Advanced paternal age has increasingly been recognized as a risk factor for male fertility and progeny health. While underlying causes are not well understood, aging is associated with a continuous decline of blood and tissue NAD+ levels, as well as a decline of testicular functions. The important basic question to what extent ageing-related NAD+ decline is functionally linked to decreased male fertility has been difficult to address due to the pleiotropic effects of aging, and the lack of a suitable animal model in which NAD+ levels can be lowered experimentally in chronologically young adult males. We therefore developed a transgenic mouse model of acquired niacin dependency (ANDY), in which NAD+ levels can be experimentally lowered using a niacin-deficient, chemically defined diet. Using ANDY mice, this report demonstrates for the first time that decreasing body-wide NAD+ levels in young adult mice, including in the testes, to levels that match or exceed the natural NAD+ decline observed in old mice, results in the disruption of spermatogenesis with small testis sizes and reduced sperm counts. ANDY mice are dependent on dietary vitamin B3 (niacin) for NAD+ synthesis, similar to humans. NAD+-deficiency the animals develop on a niacin-free diet is reversed by niacin supplementation. Providing niacin to NAD+-depleted ANDY mice fully rescued spermatogenesis and restored normal testis weight in the animals. The results suggest that NAD+ is important for proper spermatogenesis and that its declining levels during aging are functionally linked to declining spermatogenesis and male fertility. Functions of NAD+ in retinoic acid synthesis, which is an essential testicular signaling pathway regulating spermatogonial proliferation and differentiation, may offer a plausible mechanism for the hypospermatogenesis observed in NAD+-deficient mice.


Assuntos
Niacina , Envelhecimento , Animais , Masculino , Camundongos , Camundongos Transgênicos , NAD/metabolismo , NAD/farmacologia , Niacina/metabolismo , Niacina/farmacologia , Espermatogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA