Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 121(8): 923-929, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28790199

RESUMO

RATIONALE: Duchenne muscular dystrophy is a severe inherited form of muscular dystrophy caused by mutations in the reading frame of the dystrophin gene disrupting its protein expression. Dystrophic cardiomyopathy is a leading cause of death in Duchenne muscular dystrophy patients, and currently no effective treatment exists to halt its progression. Recent advancement in genome editing technologies offers a promising therapeutic approach in restoring dystrophin protein expression. However, the impact of this approach on Duchenne muscular dystrophy cardiac function has yet to be evaluated. Therefore, we assessed the therapeutic efficacy of CRISPR (clustered regularly interspaced short palindromic repeats)-mediated genome editing on dystrophin expression and cardiac function in mdx/Utr+/- mice after a single systemic delivery of recombinant adeno-associated virus. OBJECTIVE: To examine the efficiency and physiological impact of CRISPR-mediated genome editing on cardiac dystrophin expression and function in dystrophic mice. METHODS AND RESULTS: Here, we packaged SaCas9 (clustered regularly interspaced short palindromic repeat-associated 9 from Staphylococcus aureus) and guide RNA constructs into an adeno-associated virus vector and systemically delivered them to mdx/Utr+/- neonates. We showed that CRIPSR-mediated genome editing efficiently excised the mutant exon 23 in dystrophic mice, and immunofluorescence data supported the restoration of dystrophin protein expression in dystrophic cardiac muscles to a level approaching 40%. Moreover, there was a noted restoration in the architecture of cardiac muscle fibers and a reduction in the extent of fibrosis in dystrophin-deficient hearts. The contractility of cardiac papillary muscles was also restored in CRISPR-edited cardiac muscles compared with untreated controls. Furthermore, our targeted deep sequencing results confirmed that our adeno-associated virus-CRISPR/Cas9 strategy was very efficient in deleting the ≈23 kb of intervening genomic sequences. CONCLUSIONS: This study provides evidence for using CRISPR-based genome editing as a potential therapeutic approach for restoring dystrophic cardiomyopathy structurally and functionally.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Cardiomiopatias/terapia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Distrofina/genética , Edição de Genes/métodos , Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Contração Miocárdica , Músculos Papilares/metabolismo , Animais , Proteínas Associadas a CRISPR/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Dependovirus/genética , Modelos Animais de Doenças , Distrofina/metabolismo , Éxons , Fibrose , Regulação da Expressão Gênica , Predisposição Genética para Doença , Vetores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Mutação , Músculos Papilares/patologia , Músculos Papilares/fisiopatologia , Fenótipo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Recuperação de Função Fisiológica , Utrofina/genética
2.
Oral Oncol ; 140: 106372, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004423

RESUMO

OBJECTIVES: Somatic mutations may predict prognosis, therapeutic response, or cancer progression. We evaluated targeted sequencing of oral rinse samples (ORS) for non-invasive mutational profiling of oral squamous cell carcinomas (OSCC). MATERIALS AND METHODS: A custom hybrid capture panel targeting 42 frequently mutated genes in OSCC was used to identify DNA sequence variants in matched ORS and fresh-frozen tumors from 120 newly-diagnosed patients. Receiver operating characteristic (ROC) curves determined the optimal variant allele fraction (VAF) cutoff for variant discrimination in ORS. Behavioral, clinical, and analytical factors were evaluated for impacts on assay performance. RESULTS: Half of tumors involved oral tongue (50 %), and a majority were T1-T2 tumor stage (55 %). Median depth of sequencing coverage was 260X for OSCC and 1,563X for ORS. Frequencies of single nucleotide variants (SNVs) at highly mutated genes (including TP53, FAT1, HRAS, NOTCH1, CDKN2A, CASP8, NFE2L2, and PIK3CA) in OSCC were highly correlated with TCGA data (R = 0.96, p = 2.5E-22). An ROC curve with area-under-the-curve (AUC) of 0.80 showed that, at an optimal VAF cutoff of 0.10 %, ORS provided 76 % sensitivity, 96 % specificity, but precision of only 2.6E-4. At this VAF cutoff, 206 of 270 SNVs in OSCC were detected in matched ORS. Sensitivity varied by patient, T stage and target gene. Neither downsampled ORS as matched control nor a naïve Bayesian classifier adjusting for sequencing bias appreciably improved assay performance. CONCLUSION: Targeted sequencing of ORS provides moderate assay performance for noninvasive detection of SNVs in OSCC. Our findings strongly rationalize further clinical and laboratory optimization of this assay, including strategies to improve precision.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Teorema de Bayes , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/patologia , Mutação , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA