RESUMO
Monitoring the qualitative status of freshwaters is an important goal of the international community, as stated in the Sustainable Development Goal (SDGs) indicator 6.3.2 on good ambient water quality. Monitoring data are, however, lacking in many countries, allegedly because of capacity challenges of less-developed countries. So far, however, the relationship between human development and capacity challenges for water quality monitoring have not been analysed systematically. This hinders the implementation of fine-tuned capacity development programmes for water quality monitoring. Against this background, this study takes a global perspective in analysing the link between human development and the capacity challenges countries face in their national water quality monitoring programmes. The analysis is based on the latest data on the human development index and an international online survey amongst experts from science and practice. Results provide evidence of a negative relationship between human development and the capacity challenges to meet SDG 6.3.2 monitoring requirements. This negative relationship increases along the course of the monitoring process, from defining the enabling environment, choosing parameters for the collection of field data, to the analytics and analysis of five commonly used parameters (DO, EC, pH, TP and TN). Our assessment can be used to help practitioners improve technical capacity development activities and to identify and target investment in capacity development for monitoring.
Assuntos
Monitoramento Ambiental , Qualidade da Água , Humanos , Inquéritos e Questionários , Desenvolvimento Sustentável , ÁguaRESUMO
Background and Aims: In plants, extensive intra-specific variation exists in the allocation of resources between vegetative growth and reproduction, reflecting different functional strategies. A simple method for the classification of intra-specific variation in these strategies would enable characterization of evolutionary and ecological processes. Methods: C-S-R theory can be applied to classify functional strategies (competitive C; stress tolerant, S; ruderal, R) in different plant species. Using a diverse set of arabidopsis ( Arabidopsis thaliana ) accessions grown under common conditions, it was tested whether a simple approach designed for allocating C-S-R strategies at the species level can also be used to analyse intra-specific variation. Key Results: Substantial intra-specific variation between arabidopsis accessions was found along the S-R axis. There was a positive correlation of temperature at the geographical origin with the dimension of S and a negative correlation with the dimension of R. Flowering time in a natural annual cycle and leaf dry matter content were identified as the main determinants of this adaptation, with plants originating from warmer climates having a higher leaf dry matter content and flowering earlier in a common garden. Conclusions: It was shown that functional strategies reflect adaptation to climate, with consequences for important traits such as fecundity and total plant dry weight. The approach could be used in genome-wide association studies to determine the genetic basis of functional strategies in wild species or crops.