Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Anal Chem ; 96(4): 1462-1467, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38211954

RESUMO

While the combination of liquid chromatography (LC) and mass spectrometry (MS) serves as a robust approach for oligosaccharide analysis, it has difficulty distinguishing the smallest differences between isomers. The integration of infrared (IR) spectroscopy within a mass spectrometer as an additional analytical dimension can effectively address this limitation by providing a molecular fingerprint that is unique to each isomer. However, the direct interfacing of LC-MS with IR spectroscopy presents a technical challenge arising from the mismatch in the operational time scale of each method. In previous studies, this temporal incompatibility was mitigated by employing strategies designed to slow down or broaden the LC elution peaks of interest, but this workaround is applicable only for a few species at a time, necessitating multiple LC runs for comprehensive analysis. In the current work, we directly couple LC with cryogenic IR spectroscopy by acquiring a spectrum in as little as 10 s. This allows us to generate an orthogonal data dimension for molecular identification in the same amount of time that it normally takes for LC analysis. We successfully demonstrate this approach on a commercially available human milk oligosaccharide product, acquiring spectral information on the eluting peaks in real time and using it to identify both the specified constituents and nonspecified product impurities.


Assuntos
Oligossacarídeos , Humanos , Cromatografia Líquida , Espectrometria de Massas/métodos , Isomerismo , Espectrofotometria Infravermelho , Oligossacarídeos/química
2.
Anal Chem ; 95(25): 9623-9629, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37307499

RESUMO

The high isomeric complexity of glycans makes them particularly difficult to analyze. While ultra-high-resolution ion mobility spectrometry (IMS) can offer rapid baseline separation of many glycan isomers, their unambiguous identification remains a challenging task. One approach to solving this problem is to identify mobility-separated isomers by measuring their highly resolved cryogenic vibrational spectra. To be able to apply this approach to complex mixtures at high throughput, we have recently developed a Hadamard transform multiplexed spectroscopic technique that allows measuring vibrational spectra of all species separated in both IMS and mass spectrometry dimensions in a single laser scan. In the current work, we further develop the multiplexing technique using ion traps incorporated directly into the IMS device based on structures for lossless ion manipulations (SLIM). We also show that multiplexed spectroscopy using perfect sequence matrices can outperform standard multiplexing using Simplex matrices. Lastly, we show that we can increase the measurement speed and throughput further by running multiple multiplexing schemes using several SLIM ion traps in combination with simultaneous spectroscopic measurements in the segmented cryogenic ion trap.

3.
Anal Chem ; 95(18): 7118-7126, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37119183

RESUMO

The structural elucidation of metabolite molecules is important in many branches of the life sciences. However, the isomeric and isobaric complexity of metabolites makes their identification extremely challenging, and analytical standards are often required to confirm the presence of a particular compound in a sample. We present here an approach to overcome these challenges using high-resolution ion mobility spectrometry in combination with cryogenic vibrational spectroscopy for the rapid separation and identification of metabolite isomers and isobars. Ion mobility can separate isomeric metabolites in tens of milliseconds, and cryogenic IR spectroscopy provides highly structured IR fingerprints for unambiguous molecular identification. Moreover, our approach allows one to identify metabolite isomers automatically by comparing their IR fingerprints with those previously recorded in a database, obviating the need for a recurrent introduction of analytical standards. We demonstrate the principle of this approach by constructing a database composed of IR fingerprints of eight isomeric/isobaric metabolites and use it for the identification of these isomers present in mixtures. Moreover, we show how our fast IR fingerprinting technology allows to probe the IR fingerprints of molecules within just a few seconds as they elute from an LC column. This approach has the potential to greatly improve metabolomics workflows in terms of accuracy, speed, and cost.


Assuntos
Espectrometria de Mobilidade Iônica , Metabolômica , Metabolômica/métodos , Isomerismo , Bases de Dados Factuais
4.
Analyst ; 148(10): 2277-2282, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37098888

RESUMO

High-resolution ion mobility spectrometry (IMS) coupled with cryogenic infrared spectroscopy has proven to be a powerful technique for the identification of oligosaccharides. However, the need for an extensive database, combined with the scarcity of pure standards, remains a significant barrier to the broad application of this approach. To solve this issue, we demonstrate a method in which ion fragments produced by collision-induced dissociation (CID) are separated using IMS and identified using the vibrational fingerprints of only a few standards. Identification of the fragments allows us to determine the structure of the precursor molecule, the vibrational fingerprint of which is then added to our database. We then show how we can use this approach to identify the structure of mobility separated isomers found in pooled human milk.


Assuntos
Espectrometria de Mobilidade Iônica , Leite Humano , Humanos , Espectrometria de Mobilidade Iônica/métodos , Leite Humano/química , Oligossacarídeos/análise , Isomerismo , Espectrofotometria Infravermelho
5.
Anal Chem ; 94(6): 2912-2917, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35113536

RESUMO

Coupling vibrational ion spectroscopy with high-resolution ion mobility separation offers a promising approach for detailed analysis of biomolecules in the gas phase. Improvements in the ion mobility technology have made it possible to separate isomers with minor structural differences, and their interrogation with a tunable infrared laser provides vibrational fingerprints for unambiguous database-enabled identification. Nevertheless, wide analytical application of this technique requires high-throughput approaches for acquisition of vibrational spectra of all species present in complex mixtures. In this work, we present a novel multiplexed approach and demonstrate its utility for cryogenic ion spectroscopy of peptides and glycans in mixtures. Since the method is based on Hadamard transform multiplexing, it yields infrared spectra with an increased signal-to-noise ratio compared to a conventional signal averaging approach.


Assuntos
Polissacarídeos , Isomerismo , Razão Sinal-Ruído , Espectrofotometria Infravermelho
6.
Anal Chem ; 94(28): 10101-10108, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35797429

RESUMO

Glycan analysis has evolved considerably during the last decade. The advent of high-resolution ion-mobility spectrometry has enabled the separation of isomers with only the slightest of structural differences. However, the ability to separate such species raises the problem of identifying all the mobility-resolved peaks that are observed, especially when analytical standards are not available. In this work, we report an approach based on the combination of IMSn with cryogenic vibrational spectroscopy to identify N-glycan reducing-end anomers. By identifying the reducing-end α and ß anomers of diacetyl-chitobiose, which is a disaccharide that forms part of the common core of all N-glycans, we are able to assign mobility peaks to reducing anomers of a selection of N-glycans of different sizes, starting from trisaccharides such as Man-1 up to glycans containing nine monosaccharide units, such as G2. By building an infrared fingerprint database of the identified N-glycans, our approach allows unambiguous identification of mobility peaks corresponding to reducing-end anomers and distinguishes them from positional isomers that might be present in a complex mixture.


Assuntos
Espectrometria de Mobilidade Iônica , Polissacarídeos , Humanos , Espectrometria de Mobilidade Iônica/métodos , Isomerismo , Polissacarídeos/química , Análise Espectral
7.
Analyst ; 147(4): 704-711, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35079754

RESUMO

While glycans are present on the surface of cells in all living organisms and play key roles in most biological processes, their isomeric complexity makes their structural characterization challenging. Of particular importance are positional isomers, for which analytical standards are difficult to obtain. We combine ultrahigh-resolution ion-mobility spectrometry with collision-induced dissociation and cryogenic infrared spectroscopy to determine the structure of N-glycan positional isomers. This approach is based on first separating the parent molecules by SLIM-based IMS, producing diagnostic fragments specific to each positional isomer, separating the fragments by IMS, and identifying them by comparing their IR fingerprints to a previously recorded spectral database. We demonstrate this strategy using a bottom-up scheme to identify the positional isomers of the N-linked glycan G0-N, in which a terminal N-acetylglucosamine (GlcNAc) is attached to either the α-3 or α-6 branch of the common N-glycan pentasaccharide core. We then use IR fingerprints of these newly identified isomers to identify the positional isomers of G1 and G1F, which are biantennary complex-type N-glycans with a terminal galactose attached to either the α-3 or α-6 branch, and in the case of G1F a fucose attached to the reducing-end GlcNAc. Starting with just a few analytical standards, this fragment-based spectroscopy method allows us to develop a database which we can use to identify positional isomers. The generalization of this approach would greatly facilitate glycan analysis.


Assuntos
Espectrometria de Mobilidade Iônica , Polissacarídeos , Isomerismo , Oligossacarídeos , Espectrofotometria Infravermelho
8.
Anal Chem ; 93(44): 14730-14736, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34704745

RESUMO

The analysis of glycans presents a significant challenge that arises from their isomeric heterogeneity. While high-resolution ion mobility spectrometry (IMS) has shown the ability to resolve subtly different glycan isomers, their unambiguous assignment remains difficult. Here, we demonstrate an infrared (IR) spectroscopic approach for identifying isomers in a glycan mixture. To display the feasibility of this approach, we have constructed a small database of cryogenic spectra of five lacto-N-fucopentaose (LNFP) and six disaccharide isomers and demonstrated that in the cases where they cannot be separated by IMS, we can use a cryogenic IR spectrum to identify the isomeric components of a mixture.


Assuntos
Leite Humano , Oligossacarídeos , Humanos , Espectrometria de Mobilidade Iônica , Isomerismo , Polissacarídeos
9.
Analyst ; 146(15): 4789-4795, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34231555

RESUMO

Glycosylation patterns in monoclonal antibodies (mAbs) can vary significantly between different host cell types, and these differences may affect mAbs safety, efficacy, and immunogenicity. Recent studies have demonstrated that glycan isomers with the terminal galactose position on either the Man α1-3 arm or the Man α1-6 arm have an impact on the effector functions and dynamic structure of mAbs. The development of a robust method to distinguish positional isomers of glycans is thus critical to guarantee mAb quality. In this work, we apply high-resolution ion mobility combined with cryogenic infrared spectroscopy to distinguish isomeric glycans with different terminal galactose positions, using G1F as an example. Selective enzymatic synthesis of the G1(α1-6)F isomer allows us to assign the peaks in the arrival-time distributions and the infrared spectra to their respective isomeric forms. Moreover, we demonstrate the impact of the host cell line (CHO and HEK-293) on the IgG G1F gycan profile at the isomer level. This work illustrates the potential of our approach for glycan analysis of mAbs.


Assuntos
Anticorpos Monoclonais , Polissacarídeos , Glicosilação , Células HEK293 , Humanos , Isomerismo
10.
J Am Chem Soc ; 142(13): 5948-5951, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32176849

RESUMO

Despite the essential role that glycans play in many biological processes, their isomeric complexity makes their structural determination particularly challenging. Tandem mass spectrometry has played a central role in glycan analysis, and recent work has shown that fragments generated by collision-induced dissociation (CID) of disaccharides can retain the anomeric configuration of the glycosidic bond. If this result proves to be general, it would provide a powerful new tool for glycan sequencing. In this work, we use messenger-tagging infrared (IR) spectroscopy to investigate the generality of anomer retention in CID by exploring different fragmentation channels in glycans of increasing complexity. Our results demonstrate that anomericity seems to be retained irrespective of fragment size and branching.


Assuntos
Polissacarídeos/química , Configuração de Carboidratos , Dissacarídeos/química , Espectrofotometria Infravermelho , Espectrometria de Massas em Tandem
11.
Anal Chem ; 92(13): 9079-9085, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32456419

RESUMO

The isomeric heterogeneity of glycans poses a great challenge for their analysis. While combining ion mobility spectrometry (IMS) with tandem mass spectrometry is a powerful means for identifying and characterizing glycans, it has difficulty distinguishing the subtlest differences between isomers. Cryogenic infrared spectroscopy provides an additional dimension for glycan identification that is extremely sensitive to their structure. Our approach to glycan analysis combines ultrahigh-resolution IMS-IMS using structures for lossless ion manipulation (SLIM) with cryogenic infrared spectroscopy. We present here the design of a SLIM board containing a series of on-board traps in which we perform collision-induced dissociation (CID) at pressures in the millibar range. We characterize the on-board CID process by comparing the fragments generated from a pentapeptide to those obtained on a commercial tandem mass spectrometer. We then apply our new technique to study the mobility and vibrational spectra of CID fragments from two human milk oligosaccharides. Comparison of both the fragment drift times and IR spectra with those of suitable reference compounds allows us to identify their specific isomeric form, including the anomericity of the glycosidic linkage, demonstrating the power of this tool for glycan analysis.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Polissacarídeos/análise , Humanos , Espectrometria de Mobilidade Iônica/normas , Isomerismo , Leite Humano/metabolismo , Oligossacarídeos/análise , Oligossacarídeos/normas , Polissacarídeos/normas , Padrões de Referência , Espectrofotometria Infravermelho/normas , Espectrometria de Massas em Tandem
12.
Anal Chem ; 91(7): 4876-4882, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30835102

RESUMO

The isomeric complexity of glycans make their analysis by traditional techniques particularly challenging. While the recent combination of ion mobility spectrometry (IMS) with cryogenic IR spectroscopy has demonstrated promise as a new technique for glycan analysis, this approach has been limited by the modest resolution of the ion mobility stage. In this work we report results from a newly developed instrument that combines ultrahigh-resolution IMS with cryogenic IR spectroscopy for glycan analysis. This apparatus makes use of the recent development in traveling-wave IMS called structures for lossless ion manipulation. The IMS stage allows the selection of glycan isomers that differ in collisional cross section by as little as 0.2% before injecting them into a cryogenic ion trap for IR spectral analysis. We compare our results to those using drift-tube IMS and highlight the advantages of the substantial increase in resolution. Application of this approach to glycan mixtures demonstrates our ability to isolate individual components, measure a cryogenic IR spectrum, and identify them using a spectroscopic database.


Assuntos
Polissacarídeos/análise , Configuração de Carboidratos , Espectrometria de Mobilidade Iônica , Espectrofotometria Infravermelho
13.
Faraday Discuss ; 217(0): 114-125, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30993271

RESUMO

Double-resonance spectroscopic schemes in combination with cryogenic ion traps are the go-to techniques when isomer-specific high-resolution spectra are required for analysis of molecular ions. Their limitation lies in the requirement for well-resolved, isomer-specific absorption bands as well as in the potentially time-consuming steps to identify each isomer. We present an alternative approach where isomeric species are readily separated using ion mobility spectrometry (IMS) and selected prior to cryogenic spectroscopic analysis. To date, most IMS approaches suffer from relatively low resolution, however, recent technological developments in the field of travelling-wave ion mobility using structures for lossless ion manipulation (SLIM) permit the use of extremely long drift paths, which greatly enhances the resolution. We demonstrate the power of combining this type of ultra-high resolution IMS with cryogenic vibrational spectroscopy by comparing mobility-resolved IR spectra of a disaccharide to those acquired using IR-IR double resonance. This new approach is especially promising for the investigation of larger molecules where spectral congestion interferes with double resonance techniques.


Assuntos
Dissacarídeos/análise , Espectrometria de Mobilidade Iônica , Raios Infravermelhos , Íons/análise , Espectrofotometria Infravermelho
14.
J Am Chem Soc ; 140(24): 7554-7560, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29637771

RESUMO

The amino acid serine has long been known to form a protonated "magic-number" cluster containing eight monomer units that shows an unusually high abundance in mass spectra and has a remarkable homochiral preference. Despite many experimental and theoretical studies, there is no consensus on a Ser8H+ structure that is in agreement with all experimental observations. Here, we present the structure of Ser8H+ determined by a combination of infrared spectroscopy and ab initio molecular dynamics simulations. The three-dimensional structure that we determine is ∼25 kcal mol-1 more stable than the previous most stable published structure and explains both the homochiral preference and the experimentally observed facile replacement of two serine units.

15.
J Am Chem Soc ; 138(50): 16315-16321, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27936675

RESUMO

Amphiphilic porphyrins are of great interest in the field of supramolecular chemistry because they can be fabricated into highly ordered architectures that are stabilized by π-π stacking of porphine rings as well as by non-covalent interactions between their hydrophilic substituents. Protoporphyrin IX (PPIX) has two flexible propionic acid tails and is one of the most common amphiphilic porphyrins. However, unlike other PPIX analogues, PPIX does not form stable extended nanostructures, and the reason for this is still not understood. Here, we employ ion mobility mass spectrometry in combination with infrared multiple photon dissociation spectroscopy to investigate early aggregates of PPIX. The ion mobility results show that growth occurs via single-stranded face-to-face stacking of PPIX. From the infrared spectroscopy on well-defined aggregates, it can be concluded that pairing of the carboxylic acid groups of the tails is a stabilizing element and that such a pairing occurs across a third residue from residue n to residue n+2. The tetramer appears to be especially stable, because all of its propionic acid tails are optimally paired and no free tails to promote further growth are present, which possibly prevents PPIX from forming larger, well-ordered assemblies.


Assuntos
Gases/química , Protoporfirinas/química , Modelos Moleculares , Conformação Molecular , Espectrofotometria Infravermelho
16.
Analyst ; 141(19): 5502-10, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27494002

RESUMO

In this study the gas-phase structure of ubiquitin and its lysine-to-arginine mutants was investigated using ion mobility-mass spectrometry (IM-MS) and electron transfer dissociation-mass spectrometry (ETD-MS). Crown ether molecules were attached to positive charge sites of the proteins and the resulting non-covalent complexes were analysed. Collision induced dissociation (CID) experiments revealed relative energy differences between the wild type and the mutant crown-ether complexes. ETD-MS experiments were performed to identify the crown ether binding sites. Although not all of the binding sites could be revealed, the data confirm that the first crown ether is able to bind to the N-terminus. IM-MS experiments show a more compact structure for specific charge states of wild type ubiquitin when crown ethers are attached. However, data on ubiquitin mutants reveal that only specific lysine residues contribute to the effect of charge microsolvation. A compaction is only observed for one of the investigated mutants, in which the lysine has no proximate interaction partner. On the other hand when the lysine residues are involved in salt bridges, attachment of crown ethers has little effect on the structure.

17.
Phys Chem Chem Phys ; 18(29): 19950-4, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27398722

RESUMO

Polyalanine based peptides that carry a lysine at the C-terminus ([Ac-AlanLys + H](+)) are known to form α-helices in the gas phase. Three factors contribute to the stability of these helices: (i) the interaction between the helix macro dipole and the charge, (ii) the capping of dangling C[double bond, length as m-dash]O groups by lysine and (iii) the cooperative hydrogen bond network. In previous studies, the influence of the interaction between the helix dipole and the charge as well as the impact of the capping was studied intensively. Here, we complement these findings by systematically assessing the third parameter, the H-bond network. In order to selectively remove one H-bond along the backbone, we use amide-to-ester substitutions. The resulting depsi peptides were analyzed by ion-mobility and m/z-selective infrared spectroscopy as well as theoretical calculations. Our results indicate that peptides which contain only one ester bond still maintain the helical conformation. We conclude that the interaction between the charge and the helix macro-dipole is most crucial for the formation of the α-helical conformation and a single backbone H-bond has only little influence on the overall stability.

18.
Phys Chem Chem Phys ; 18(36): 25474-25482, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27722299

RESUMO

The charge distribution in a molecule is crucial in determining its physical and chemical properties. Aminobenzoic acid derivatives are biologically active small molecules, which have two possible protonation sites: the amine (N-protonation) and the carbonyl oxygen (O-protonation). Here, we employ gas-phase infrared spectroscopy in combination with ion mobility-mass spectrometry and density functional theory calculations to unambiguously determine the preferred protonation sites of p-, m-, and o-isomers of aminobenzoic acids as well as their ethyl esters. The results show that the site of protonation does not only depend on the intrinsic molecular properties such as resonance effects, but also critically on the environment of the molecules. In an aqueous environment, N-protonation is expected to be lowest in energy for all species investigated here. In the gas phase, O-protonation can be preferred, and in those cases, both N- and O-protonated species are observed. To shed light on a possible proton migration pathway, the protonated molecule-solvent complex as well as proton-bound dimers are investigated.

19.
Angew Chem Int Ed Engl ; 55(45): 14173-14176, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27545682

RESUMO

Can the structures of small to medium-sized proteins be conserved after transfer from the solution phase to the gas phase? A large number of studies have been devoted to this topic, however the answer has not been unambiguously determined to date. A clarification of this problem is important since it would allow very sensitive native mass spectrometry techniques to be used to address problems relevant to structural biology. A combination of ion-mobility mass spectrometry with infrared spectroscopy was used to investigate the secondary and tertiary structure of proteins carefully transferred from solution to the gas phase. The two proteins investigated are myoglobin and ß-lactoglobulin, which are prototypical examples of helical and ß-sheet proteins, respectively. The results show that for low charge states under gentle conditions, aspects of the native secondary and tertiary structure can be conserved.


Assuntos
Lactoglobulinas/química , Mioglobina/química , Espectrometria de Massas , Modelos Moleculares , Conformação Proteica , Solventes/química
20.
Proteomics ; 15(16): 2804-12, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25644066

RESUMO

The top-down approach in protein sequencing requires simple methods in which the analyte can be readily dissociated at every position along the backbone. In this context, ultraviolet photodissociation (UVPD) recently emerged as a promising tool because, in contrast to slow heating techniques such as CID, the absorption of UV light is followed by a rather statistically distributed cleavage of backbone bonds. As a result, nearly complete sequence coverage can be obtained. It is well known, however, that gas-phase proteins can adopt a variety of different, sometimes coexisting conformations and the influence of this structural diversity on the UVPD fragmentation behavior is not clear. Using ion mobility-UVPD-MS, we recently showed that UVPD is sensitive to the higher order structure of gas-phase proteins. In particular, the cis/trans isomerization of certain proline peptide bonds was shown to significantly influence the UVPD fragmentation pattern of two extended conformers of 11(+) ubiquitin. Building on these results, we here provide conformer-selective UVPD data for 7(+) ubiquitin ions, which are known to be present in a much more diverse and wider ensemble of different structures, ranging from very compact to highly extended species. Our data show that certain conformers fall into groups with similar UVPD fragmentation pattern. Surprisingly, however, the conformers within each group can differ tremendously in their collision cross-section. This indicates that the multiple coexisting conformations typically observed for 7(+) ubiquitin are caused by a few, not easily interconvertible, subpopulations.


Assuntos
Proteínas/química , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Raios Ultravioleta , Desenho de Equipamento , Fotólise , Conformação Proteica , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA