Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 22(9): 345-359, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34346559

RESUMO

BACKGROUND: High-intensity focused ultrasound (HIFU) has been in clinical use for a variety of solid tumors and cancers. Accurate and reliable calibration is in a great need for clinical applications. An extracorporeal clinical HIFU system applied for the investigational device exemption (IDE) to the Food and Drug Administration (FDA) so that evaluation of its characteristics, performance, and safety was required. METHODS: The acoustic pressure and power output was characterized by a fiber optic probe and a radiation force balance, respectively, with the electrical power up to 2000 W. An in situ acoustic energy was established as the clinical protocol at the electrical power up to 500 W. Temperature elevation inside the tissue sample was measured by a thermocouple array. Generated lesion volume at different in situ acoustic energies and pathological examination of the lesions was evaluated ex vivo. RESULTS: Acoustic pressure mapping showed the insignificant presence of side/grating lobes and pre- or post-focal peaks (≤-12 dB). Although distorted acoustic pressure waveform was found in the free field, the nonlinearity was reduced significantly after the beam propagating through tissue samples (i.e., the second harmonic of -11.8 dB at 500 W). Temperature elevation was <10°C at a distance of 10 mm away from a 20-mm target, which suggests the well-controlled HIFU energy deposition and no damage to the surrounding tissue. An acoustic energy in the range of 750-1250 J resulted in discrete lesions with an interval space of 5 mm between the treatment spots. Histology confirmed that the lesions represented a region of permanently damaged cells by heat fixation, without causing cell lysis by either cavitation or boiling. CONCLUSIONS: Our characterization and ex vivo evaluation protocol met the IDE requirement. The in-situ acoustic energy model will be used in clinical trials to deliver almost consistent energy to the various targets.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Acústica , Calibragem , Fenômenos Mecânicos , Estados Unidos
2.
Ultrasound Med Biol ; 37(10): 1653-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21821352

RESUMO

Esophageal and gastric varices are associated with significant morbidity and mortality for cirrhotic patients. The current modalities available for treating bleeding esophageal and gastric varices, namely endoscopic band ligation and sclerotherapy, require frequent sessions to obtain effective thrombosis and are associated with significant adverse effects. A more effective therapy that results in long-term vascular occlusion has the potential to improve patient outcomes. In this study, we investigated a new potential method for inducing long-term vascular occlusion by targeting segments of a rabbit's auricular vein in vivo with low-duty-cycle, high-peak-rarefaction pressure (9 MPa), pulsed high-intensity focused ultrasound in the presence of intravenously administered ultrasound microbubbles followed by local injection of fibrinogen and a pro-inflammatory agent (ethanol, cyanoacrylate or morrhuate sodium). The novel method introduced in this study resulted in acute and long-term complete vascular occlusions when injecting a pro-inflammatory agent with fibrinogen. Future investigation and translational studies are needed to assess its clinical applicability.


Assuntos
Varizes Esofágicas e Gástricas/terapia , Ablação por Ultrassom Focalizado de Alta Intensidade , Animais , Aprotinina/administração & dosagem , Cianoacrilatos/administração & dosagem , Etanol/administração & dosagem , Fibrinogênio/administração & dosagem , Fluorocarbonos/administração & dosagem , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Coelhos , Morruato de Sódio/administração & dosagem , Trombose/induzido quimicamente , Trombose/diagnóstico por imagem , Ultrassonografia
3.
IEEE Trans Biomed Eng ; 57(1): 37-40, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19709959

RESUMO

Targeted vascular occlusion is desirable for clinical therapies such as in the treatment of esophageal and gastric varices and varicose veins. The feasibility of ultrasound-mediated endothelial damage for vascular occlusion was studied. A segment of a rabbit auricular vein was treated in vivo with low duty cycle, high peak rarefaction pressure (9 MPa) high-intensity focused ultrasound pulses in the presence of intravenously administered circulating microbubbles, followed by fibrinogen injection, which resulted in the formation of an acute occlusive intravascular thrombus. Further investigation and refinements of treatment protocols are necessary for producing durable vascular occlusion.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Trombose/etiologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Meios de Contraste/administração & dosagem , Orelha/irrigação sanguínea , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/lesões , Fibrinogênio/administração & dosagem , Histocitoquímica , Coelhos , Trombose/induzido quimicamente , Trombose/diagnóstico por imagem , Ultrassonografia
4.
Ultrasound Med Biol ; 35(6): 967-75, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19201519

RESUMO

Extracorporeal high-intensity focused ultrasound (HIFU) can be used to ablate tissue noninvasively by delivering focused ultrasound energy from an external source. HIFU for clinical treatment of pancreatic cancer has been reported; however, systematic evaluation of the safety and efficacy of pancreatic ablation with HIFU has not been performed. The objectives of this in vivo study are as follows: (1) assess the safety and feasibility of targeting and ablating pancreatic tissue using the FEP-BY02 HIFU system (Yuande Bio-Medical Engineering, Beijing, China); (2) evaluate a method for estimating in situ acoustic treatment energy in an in vivo setting; and (3) identify the optimal treatment parameters that result in safe and effective ablation of the pancreas. The pancreata of 12 common swine were treated in vivo. Prior to therapy, blood was drawn for laboratory analysis. Animals were then treated with extracorporeal HIFU at three different acoustic treatment energies (750, 1000 and 1250 J). Endoscopy was performed prior to and immediately following HIFU therapy to assess for gastric injury. Blood was drawn after completion of the treatment and on days 2 and 7 following treatment to assess for biochemical evidence of pancreatitis. Animals were then euthanized 7 d following treatment and a necropsy was performed to assess for unintended injury and to obtain pancreatic tissue for histology to assess efficacy of HIFU ablation. Histologic scoring of pancreatic tissue changes was performed by a pathologist blinded to the treatment energy delivered. The degree of ablation identified on histology correlated with the treatment energy. No collateral tissue damage was seen at treatment energies of 750 and 1000 J. At 1250 J, thermal injury to the abdominal muscles and gastric ulcers were observed. There were no premature deaths, serious illnesses, skin burns or evidence of pancreatitis on biochemical analysis. HIFU treatment of the pancreas is feasible, safe and can be used to ablate tissue noninvasively. A clinical trial in humans examining the use of extracorporeal HIFU for palliation of pain related to pancreatic cancer is planned.


Assuntos
Neoplasias Pancreáticas/terapia , Terapia por Ultrassom/métodos , Animais , Modelos Animais de Doenças , Estudos de Viabilidade , Pâncreas/diagnóstico por imagem , Pâncreas/patologia , Sus scrofa , Terapia por Ultrassom/efeitos adversos , Terapia por Ultrassom/instrumentação , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA