Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 59(3): 426-36, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26190260

RESUMO

Human sister chromatids at metaphase are primarily linked by centromeric cohesion, forming the iconic X shape. Premature loss of centromeric cohesion disrupts orderly mitotic progression. Shugoshin (Sgo1) binds to and protects cohesin at inner centromeres. The kinetochore kinase Bub1 phosphorylates histone H2A at T120 (H2A-pT120) and recruits Sgo1 to kinetochores, 0.5 µm from inner centromeres. Here, we show that Sgo1 is a direct reader of the H2A-pT120 mark. Bub1 also recruits RNA polymerase II (Pol II) to unattached kinetochores and promotes active transcription at mitotic kinetochores. Mitosis-specific inactivation of Pol II traps Sgo1 at kinetochores and weakens centromeric cohesion. Sgo1 interacts with Pol II in human cells and with RNA in vitro. We propose that Pol II-dependent transcription enables kinetochore-bound Sgo1 initially recruited by H2A-pT120 to reach cohesin embedded in centromeric chromatin. Our study implicates mitotic transcription in targeting regulatory factors to highly compacted mitotic chromatin.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Histonas/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular , Células HeLa , Humanos , Cinetocoros/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transcrição Gênica , Coesinas
2.
EMBO J ; 33(17): 1960-76, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25024437

RESUMO

The antimitotic anti-cancer drugs, including taxol, perturb spindle dynamics, and induce prolonged, spindle checkpoint-dependent mitotic arrest in cancer cells. These cells then either undergo apoptosis triggered by the intrinsic mitochondrial pathway or exit mitosis without proper cell division in an adaptation pathway. Using a genome-wide small interfering RNA (siRNA) screen in taxol-treated HeLa cells, we systematically identify components of the mitotic apoptosis and adaptation pathways. We show that the Mad2 inhibitor p31(comet) actively promotes mitotic adaptation through cyclin B1 degradation and has a minor separate function in suppressing apoptosis. Conversely, the pro-apoptotic Bcl2 family member, Noxa, is a critical initiator of mitotic cell death. Unexpectedly, the upstream components of the mitochondrial apoptosis pathway and the mitochondrial fission protein Drp1 contribute to mitotic adaption. Our results reveal crosstalk between the apoptosis and adaptation pathways during mitotic arrest.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Mitose , Paclitaxel/farmacologia , RNA Interferente Pequeno/análise , Adaptação Fisiológica , Perfilação da Expressão Gênica , Células HeLa , Humanos , RNA Interferente Pequeno/genética
3.
Mol Cell ; 36(2): 207-18, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19854131

RESUMO

Orthologs of the yeast telomere protein Stn1 are present in plants, but other components of the Cdc13/Stn1/Ten1 (CST) complex have only been found in fungi. Here we report the identification of conserved telomere maintenance component 1 (CTC1) in plants and vertebrates. CTC1 encodes an approximately 140 kDa telomere-associated protein predicted to contain multiple OB-fold domains. Arabidopsis mutants null for CTC1 display a severe telomere deprotection phenotype accompanied by a rapid onset of developmental defects and sterility. Telomeric and subtelomeric tracts are dramatically eroded, and chromosome ends exhibit increased G overhangs, recombination, and end-to-end fusions. AtCTC1 both physically and genetically interacts with AtSTN1. Depletion of human CTC1 by RNAi triggers a DNA damage response, chromatin bridges, increased G overhangs, and sporadic telomere loss. These data indicate that CTC1 participates in telomere maintenance in diverse species and that a CST-like complex is required for telomere integrity in multicellular organisms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos de Plantas/metabolismo , Sequência Conservada , Células Eucarióticas/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Anáfase , Linhagem Celular Tumoral , Instabilidade Genômica , Humanos , Hibridização in Situ Fluorescente , Mutação/genética , Conformação de Ácido Nucleico , Ligação Proteica , Recombinação Genética/genética , Telômero/metabolismo
4.
PLoS Genet ; 10(6): e1004419, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24922507

RESUMO

Translesion synthesis (TLS) enables DNA replication through damaged bases, increases cellular DNA damage tolerance, and maintains genomic stability. The sliding clamp PCNA and the adaptor polymerase Rev1 coordinate polymerase switching during TLS. The polymerases Pol η, ι, and κ insert nucleotides opposite damaged bases. Pol ζ, consisting of the catalytic subunit Rev3 and the regulatory subunit Rev7, then extends DNA synthesis past the lesion. Here, we show that Rev7 binds to the transcription factor TFII-I in human cells. TFII-I is required for TLS and DNA damage tolerance. The TLS function of TFII-I appears to be independent of its role in transcription, but requires homodimerization and binding to PCNA. We propose that TFII-I bridges PCNA and Pol ζ to promote TLS. Our findings extend the general principle of component sharing among divergent nuclear processes and implicate TLS deficiency as a possible contributing factor in Williams-Beuren syndrome.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Proteínas Mad2/metabolismo , Fatores de Transcrição TFII/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/biossíntese , DNA Polimerase Dirigida por DNA/biossíntese , Instabilidade Genômica , Células HEK293 , Células HeLa , Humanos , Proteínas Mad2/biossíntese , Proteínas Mad2/genética , Proteínas Nucleares/biossíntese , Nucleotidiltransferases/biossíntese , Antígeno Nuclear de Célula em Proliferação/biossíntese , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fatores de Transcrição TFII/biossíntese , Fatores de Transcrição TFII/metabolismo
5.
J Biol Chem ; 290(4): 2431-43, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25505175

RESUMO

The spindle checkpoint ensures accurate chromosome segregation by monitoring kinetochore-microtubule attachment. Unattached or tensionless kinetochores activate the checkpoint and enhance the production of the mitotic checkpoint complex (MCC) consisting of BubR1, Bub3, Mad2, and Cdc20. MCC is a critical checkpoint inhibitor of the anaphase-promoting complex/cyclosome, a ubiquitin ligase required for anaphase onset. The N-terminal region of BubR1 binds to both Cdc20 and Mad2, thus nucleating MCC formation. The middle region of human BubR1 (BubR1M) also interacts with Cdc20, but the nature and function of this interaction are not understood. Here we identify two critical motifs within BubR1M that contribute to Cdc20 binding and anaphase-promoting complex/cyclosome inhibition: a destruction box (D box) and a phenylalanine-containing motif termed the Phe box. A BubR1 mutant lacking these motifs is defective in MCC maintenance in mitotic human cells but is capable of supporting spindle-checkpoint function. Thus, the BubR1M-Cdc20 interaction indirectly contributes to MCC homeostasis. Its apparent dispensability in the spindle checkpoint might be due to functional duality or redundant, competing mechanisms.


Assuntos
Caderinas/metabolismo , Proteínas Cdc20/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Motivos de Aminoácidos , Antígenos CD , Ciclo Celular , Inativação Gênica , Glutationa Transferase/metabolismo , Células HeLa , Homeostase , Humanos , Cinetocoros/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/metabolismo , Fuso Acromático , Ubiquitina/metabolismo
6.
EMBO J ; 30(16): 3309-21, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21743438

RESUMO

Centromeres nucleate the formation of kinetochores and are vital for chromosome segregation during mitosis. The SNF2 family helicase PICH (Plk1-interacting checkpoint helicase) and the BLM (the Bloom's syndrome protein) helicase decorate ultrafine histone-negative DNA threads that link the segregating sister centromeres during anaphase. The functions of PICH and BLM at these threads are not understood, however. Here, we show that PICH binds to BLM and enables BLM localization to anaphase centromeric threads. PICH- or BLM-RNAi cells fail to resolve these threads in anaphase. The fragmented threads form centromeric-chromatin-containing micronuclei in daughter cells. Anaphase threads in PICH- and BLM-RNAi cells contain histones and centromere markers. Recombinant purified PICH has nucleosome remodelling activities in vitro. We propose that PICH and BLM unravel centromeric chromatin and keep anaphase DNA threads mostly free of nucleosomes, thus allowing these threads to span long distances between rapidly segregating centromeres without breakage and providing a spatiotemporal window for their resolution.


Assuntos
Centrômero/metabolismo , DNA Helicases/fisiologia , DNA/metabolismo , Nucleossomos/metabolismo , RecQ Helicases/fisiologia , Anáfase , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Células HeLa , Histonas/metabolismo , Humanos , Micronúcleos com Defeito Cromossômico , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/fisiologia
7.
Proc Natl Acad Sci U S A ; 109(45): 18419-24, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23091007

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) promotes anaphase onset and mitotic exit through ubiquitinating securin and cyclin B1. The mitotic APC/C activator, the cell division cycle 20 (Cdc20) protein, directly interacts with APC/C degrons--the destruction (D) and KEN boxes. APC/C(Cdc20) is the target of the spindle checkpoint. Checkpoint inhibition of APC/C(Cdc20) requires the binding of a BubR1 KEN box to Cdc20. How APC/C recognizes substrates is not understood. We report the crystal structures of human Cdc20 alone or bound to a BubR1 KEN box. Cdc20 has a disordered N-terminal region and a C-terminal WD40 ß propeller with a preformed KEN-box-binding site at its top face. We identify a second conserved surface at the side of the Cdc20 ß propeller as a D-box-binding site. The D box of securin, but not its KEN box, is critical for securin ubiquitination by APC/C(Cdc20). Although both motifs contribute to securin ubiquitination by APC/C(Cdh1), securin mutants lacking either motif are efficiently ubiquitinated. Furthermore, D-box peptides diminish the ubiquitination of KEN-box substrates by APC/C(Cdh1), suggesting possible competition between the two motifs. Our results indicate the lack of strong positive cooperativity between the two degrons of securin. We propose that low-cooperativity, multisite target recognition enables APC/C to robustly ubiquitinate diverse substrates and helps to drive cell cycle oscillations.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteólise , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas Cdc20 , Sequência Conservada , Humanos , Modelos Moleculares , Mutagênese/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Especificidade por Substrato , Ubiquitinação
8.
Proc Natl Acad Sci U S A ; 105(50): 19815-20, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19064932

RESUMO

Telomeres shield the natural ends of chromosomes from nucleolytic attack, recognition as double-strand breaks, and inappropriate processing by DNA repair machinery. The trimeric Stn1/Ten1/Cdc13 complex is critical for chromosome end protection in Saccharomyces cerevisiae, while vertebrate telomeres are protected by shelterin, a complex of six proteins that does not include STN1 or TEN1. Recent studies demonstrate that Stn1 and Ten1 orthologs in Schizosaccharomyces pombe contribute to telomere integrity in a complex that is distinct from the shelterin components, Pot1 and Tpp1. Thus, chromosome-end protection may be mediated by distinct subcomplexes of telomere proteins. Here we report the identification of a STN1 gene in Arabidopsis that is essential for chromosome-end protection. AtSTN1 encodes an 18-kDa protein bearing a single oligonucleotide/oligosaccharide binding fold with significant sequence similarity to the yeast Stn1 proteins. Plants null for AtSTN1 display an immediate onset of growth and developmental defects and reduced fertility. These outward phenotypes are accompanied by catastrophic loss of telomeric and subtelomeric DNA, high levels of end-to-end chromosome fusions, increased G-overhang signals, and elevated telomere recombination. Thus, AtSTN1 is a crucial component of the protective telomere cap in Arabidopsis, and likely in other multicellular eukaryotes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos de Plantas/metabolismo , Telômero/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos de Plantas/genética , Dados de Sequência Molecular , Mutação , Telômero/genética , Telômero/ultraestrutura
9.
Proc Natl Acad Sci U S A ; 104(46): 18145-50, 2007 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-17989233

RESUMO

Telomeres have the paradoxical ability of protecting linear chromosome ends from DNA damage sensors by using these same proteins as essential components of their maintenance machinery. We have previously shown that the absence of ataxia telangiectasia mutated (ATM), a central regulator of the DNA damage response, accelerates the onset of genome instability in telomerase-deficient Arabidopsis, without increasing the rate of bulk telomere shortening. Here, we examine individual telomere tracts through successive plant generations using both fluorescence situ in hybridization (FISH) and primer extension telomere repeat amplification (PETRA). Unexpectedly, we found that the onset of profound developmental defects and abundant end-to-end chromosome fusions in fifth generation (G(5)) atm tert mutants required the presence of only one critically shortened telomere. Parent progeny analysis revealed that the short telomere arose as a consequence of an unusually large telomere rapid deletion (TRD) event. The most dramatic TRD was detected in atm tert mutants that had undergone meiosis. Notably, in contrast to TRD, alternative lengthening of telomeres (ALT) was suppressed in the absence of ATM. Finally, we show that size differences between telomeres on homologous chromosome ends are greater for atm tert than tert plants. Altogether, these findings suggest a dual role for ATM in regulating telomere size by promoting elongation of short telomeres and by preventing the accumulation of cells that harbor large telomere deletions.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Telômero , Proteínas Mutadas de Ataxia Telangiectasia , Sequência de Bases , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Primers do DNA , Hibridização in Situ Fluorescente , Mutação
10.
Cell Cycle ; 14(12): 1873-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25892155

RESUMO

Genome stability is ensured by multiple surveillance mechanisms that monitor the duplication, segregation, and integrity of the genome throughout the cell cycle. Depletion of components of the spliceosome, a macromolecular machine essential for mRNA maturation and gene expression, has been associated with increased DNA damage and cell cycle defects. However, the specific role for the spliceosome in these processes has remained elusive, as different cell cycle defects have been reported depending on the specific spliceosome subunit depleted. Through a detailed cell cycle analysis after spliceosome depletion, we demonstrate that the spliceosome is required for progression through multiple phases of the cell cycle. Strikingly, the specific cell cycle phenotype observed after spliceosome depletion correlates with the extent of depletion. Partial depletion of a core spliceosome component results in defects at later stages of the cell cycle (G2 and mitosis), whereas a more complete depletion of the same component elicits an early cell cycle arrest in G1. We propose a quantitative model in which different functional dosages of the spliceosome are required for different cell cycle transitions.


Assuntos
Ciclo Celular , Dano ao DNA , Spliceossomos/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA/análise , Citometria de Fluxo , Fase G1 , Fase G2 , Regulação da Expressão Gênica , Células HeLa , Humanos , Mitose , Fenótipo , Splicing de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
11.
Mol Biol Cell ; 22(22): 4227-35, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21937719

RESUMO

The spindle checkpoint senses unattached or improperly attached kinetochores during mitosis, inhibits the anaphase-promoting complex or cyclosome (APC/C), and delays anaphase onset to prevent aneuploidy. The mitotic checkpoint complex (MCC) consisting of BubR1, Bub3, Mad2, and Cdc20 is a critical APC/C-inhibitory checkpoint complex in human cells. At the metaphase-anaphase transition, the spindle checkpoint turns off, and MCC disassembles to allow anaphase onset. The molecular mechanisms of checkpoint inactivation are poorly understood. A major unresolved issue is the role of Cdc20 autoubiquitination in this process. Although Cdc20 autoubiquitination can promote Mad2 dissociation from Cdc20, a nonubiquitinatable Cdc20 mutant still dissociates from Mad2 during checkpoint inactivation. Here, we show that depletion of p31(comet) delays Mad2 dissociation from Cdc20 mutants that cannot undergo autoubiquitination. Thus both p31(comet) and ubiquitination of Cdc20 are critical mechanisms of checkpoint inactivation. They act redundantly to promote Mad2 dissociation from Cdc20.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Nucleares/metabolismo , Fuso Acromático/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Anáfase/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Cinetocoros/metabolismo , Proteínas Mad2 , Mitose , Proteínas Nucleares/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Proteínas Repressoras/metabolismo , Fuso Acromático/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA