Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(30): e202300404, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37195229

RESUMO

We report a new sodium fast-ion conductor, Na3 B5 S9 , that exhibits a high Na ion total conductivity of 0.80 mS cm-1 (sintered pellet; cold-pressed pellet=0.21 mS cm-1 ). The structure consists of corner-sharing B10 S20 supertetrahedral clusters, which create a framework that supports 3D Na ion diffusion channels. The Na ions are well-distributed in the channels and form a disordered sublattice spanning five Na crystallographic sites. The combination of structural elucidation via single crystal X-ray diffraction and powder synchrotron X-ray diffraction at variable temperatures, solid-state nuclear magnetic resonance spectra and ab initio molecular dynamics simulations reveal high Na-ion mobility (predicted conductivity: 0.96 mS cm-1 ) and the nature of the 3D diffusion pathways. Notably, the Na ion sublattice orders at low temperatures, resulting in isolated Na polyhedra and thus much lower ionic conductivity. This highlights the importance of a disordered Na ion sublattice-and existence of well-connected Na ion migration pathways formed via face-sharing polyhedra-in dictating Na ion diffusion.

2.
Angew Chem Int Ed Engl ; 62(28): e202303770, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37145989

RESUMO

Hierarchical nucleation pathways are ubiquitous in the synthesis of minerals and materials. In the case of zeolites and metal-organic frameworks, pre-organized multi-ion "secondary building units" (SBUs) have been proposed as fundamental building blocks. However, detailing the progress of multi-step reaction mechanisms from monomeric species to stable crystals and defining the structures of the SBUs remains an unmet challenge. Combining in situ nuclear magnetic resonance, small-angle X-ray scattering, and atomic force microscopy, we show that crystallization of the framework silicate, cyclosilicate hydrate, occurs through an assembly of cubic octameric Q3 8 polyanions formed through cross-linking and polymerization of smaller silicate monomers and other oligomers. These Q3 8 are stabilized by hydrogen bonds with surrounding H2 O and tetramethylammonium ions (TMA+ ). When Q3 8 levels reach a threshold of ≈32 % of the total silicate species, nucleation occurs. Further growth proceeds through the incorporation of [(TMA)x (Q3 8 )⋅n H2 O](x-8) clathrate complexes into step edges on the crystals.

3.
J Am Chem Soc ; 144(22): 9734-9746, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35605129

RESUMO

A series of seven Cu/SSZ-13 catalysts with Si/Al = 6.7 are used to elucidate key rate-controlling factors during low-temperature standard ammonia-selective catalytic reduction (NH3-SCR), via a combination of SCR kinetics and operando electron paramagnetic resonance (EPR) spectroscopy. Strong Cu-loading-dependent kinetics, with Cu atomic efficiency increasing nearly by an order of magnitude, is found when per chabazite cage occupancy for Cu ion increases from ∼0.04 to ∼0.3. This is due mainly to the release of intercage Cu transfer constraints that facilitates the redox chemistry, as evidenced from detailed Arrhenius analysis. Operando EPR spectroscopy studies reveal strong connectivity between Cu-ion dynamics and SCR kinetics, based on which it is concluded that under low-temperature steady-state SCR, kinetically most relevant Cu species are those with the highest intercage mobility. Transient binuclear Cu species are mechanistically relevant species, but their splitting and cohabitation are indispensable for low-temperature kinetics.


Assuntos
Amônia , Cobre , Amônia/química , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Temperatura
4.
Angew Chem Int Ed Engl ; 59(48): 21719-21727, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-32818311

RESUMO

High-temperature treatment of γ-Al2 O3 can lead to a series of polymorphic transformations, including the formation of δ-Al2 O3 and θ-Al2 O3 . Quantification of the microstructure in the range where δ- and θ-Al2 O3 are formed represents a formidable challenge, as both phases accommodate a high degree of structural disorder. In this work, we explore the use of an XRD recursive-stacking formalism for the quantification of high-temperature transition aluminas. We formulate the recursive-stacking methodology for modelling of disorder in δ-Al2 O3 and twinning in θ-Al2 O3 and show that explicitly accounting for the disorder is necessary to reliably model the XRD patterns of high-temperature transition alumina. We also use the recursive stacking approach to study phase transformation during high-temperature (1050 °C) treatment. We show that the two different intergrowth modes of δ-Al2 O3 have different transformation characteristics and that a significant portion of δ-Al2 O3 is stabilized with θ-Al2 O3 even after prolonged high-temperature exposures.

5.
J Am Chem Soc ; 141(43): 17370-17381, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31584807

RESUMO

The reductive cleavage of aryl ether linkages is a key step in the disassembly of lignin to its monolignol components, where selectivity is determined by the kinetics of multiple parallel and consecutive liquid-phase reactions. Triphasic hydrogenolysis of 13C-labeled benzyl phenyl ether (BPE, a model compound for the major ß-O-4 linkage in lignin), catalyzed by Ni/γ-Al2O3, was observed directly at elevated temperatures (150-175 °C) and pressures (79-89 bar) using operando magic-angle spinning NMR spectroscopy. Liquid-vapor partitioning in the NMR rotor was quantified using the 13C NMR resonances for the 2-propanol solvent, whose chemical shifts report on the internal reactor temperature. At 170 °C, BPE is converted to toluene and phenol with k1 = 0.17 s-1 gcat-1 and an apparent activation barrier of (80 ± 8) kJ mol-1. Subsequent phenol hydrogenation occurs much more slowly (k2 = 0.0052 s-1 gcat-1 at 170-175 °C), such that cyclohexanol formation is significant only at higher temperatures. Toluene is stable under these reaction conditions, but its methyl group undergoes facile H/D exchange (k3 = 0.046 s-1 gcat-1 at 175 °C). While the source of the reducing equivalents for both hydrogenolysis and hydrogenation is exclusively H2/D2(g) rather than the alcohol solvent at these temperatures, the initial isotopic composition of adsorbed H/D on the catalyst surface is principally determined by the solvent isotopic composition (2-PrOH/D). All reactions are preceded by a pronounced induction period associated with catalyst activation. In air, Ni nanoparticles are passivated by a surface oxide monolayer, whose removal under H2 proceeds with an apparent activation barrier of (72 ± 13) kJ mol-1. The operando NMR spectra provide molecularly specific, time-resolved information about the multiple simultaneous and sequential processes as they occur at the solid-liquid interface.

6.
Environ Sci Technol ; 53(6): 3018-3026, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30767514

RESUMO

We investigated the extent to which contact with mineral surfaces affected the molecular integrity of a model protein, with an emphasis on identifying the mechanisms (hydrolysis, oxidation) and conditions leading to protein alteration. To this end, we studied the ability of four mineral surface archetypes (negatively charged, positively charged, neutral, redox-active) to abiotically fragment a well-characterized protein (GB1) as a function of pH and contact time. GB1 was exposed to the soil minerals montmorillonite, goethite, kaolinite, and birnessite at pH 5 and pH 7 for 1, 8, 24, and 168 h and the supernatant was screened for peptide fragments using Tandem Mass Spectrometry. To distinguish between products of oxidative and hydrolytic cleavage, we combined results from the SEQUEST algorithm, which identifies protein fragments that were cleaved hydrolytically, with the output of a deconvolution algorithm (DECON-Routine) designed to identify oxidation fragments. All four minerals were able to induce protein cleavage. Manganese oxide was effective at both hydrolytic and oxidative cleavage. The fact that phyllosilicates-which are not redox active-induced oxidative cleavage indicates that surfaces acted as catalysts and not as reactants. Our results extend previous observations of proteolytic capabilities in soil minerals to the groups of phyllosilicates and Fe-oxides. We identified structural regions of the protein with particularly high susceptibility to cleavage (loops and ß strands) as well as regions that were entirely unaffected (α helix).


Assuntos
Minerais , Solo , Caulim , Oxirredução , Proteólise
7.
Phys Chem Chem Phys ; 21(9): 4717-4720, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30762854

RESUMO

NMR methods were utilized to monitor the in situ structural and dynamic changes of various species in highly alkaline tetramethylammonium (TMA) silicate solutions. Quantitative 29Si NMR, 1H, 2H, and 17O relaxation NMR, and 1H and 29Si diffusion NMR of silicates, TMA, H2O and D2O demonstrate that the growth of the cubic octamer Q38 is accompanied by reduced water mobility and increasing TMA coordination number per Q38, which reaches an equilibrium value of 4.5 at 15 °C. Temperature-dependent measurements further reveal that the increased control over speciation by TMA at lower temperatures results from the more stable ion associations via slower solvent motions.

8.
Solid State Nucl Magn Reson ; 102: 31-35, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31295629

RESUMO

We present a novel nuclear magnetic resonance (NMR) probe design focused on optimizing the temperature gradient across the sample for high temperature magic angle spinning (MAS) experiments using standard rotors. Computational flow dynamics (CFD) simulations were used to assess and optimize the temperature gradient across the sample under MAS conditions. The chemical shift and linewidth of 207Pb direct polarization in lead nitrate were used to calibrate the sample temperature and temperature gradient, respectively. A temperature gradient of less than 3 °C across the sample was obtained by heating bearing gas flows and adjusting its temperature and flow rate during variable temperature (VT) experiments. A maximum temperature of 350 °C was achieved in this probe using a Varian 5 mm MAS rotor with standard Vespel drive tips and end caps. Time-resolved 13C and 1H MAS NMR experiments were performed at 325 °C and 60 bar to monitor an in-situ mixed phase reverse water gas shift reaction, industrial synthesis of CH3OH from a mixture of CO2 and H2 with a Cu/ZnO/Al2O3 catalyst, demonstrating the first in-situ NMR monitoring of a chemical system at temperatures higher than 250 °C in a pressurized environment. The combination of this high-temperature probe and high-pressure rotors will allow for in-situ NMR studies of a great variety of chemical reactions that are inaccessible to conventional NMR setup.

9.
Inorg Chem ; 57(12): 6903-6912, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29870242

RESUMO

Understanding fundamental Tc chemistry is important to both the remediation of nuclear waste and the reprocessing of nuclear fuel; however, current knowledge of the electronic structure and spectral signatures of low-valent Tc compounds significantly lags behind the remainder of the d-block elements. In particular, identification and treatment of Tc speciation in legacy nuclear waste is challenging due to the lack of reference data especially for Tc compounds in the less common oxidation states (I-VI). In an effort to establish a spectroscopic library corresponding to the relevant conditions of extremely high ionic strength typical for the legacy nuclear waste, compounds with the general formula of [ fac-Tc(CO)3(OH2)3- n(OH) n]1- n (where n = 0-3) were examined by a range of spectroscopic techniques including 99Tc/13C NMR, IR, XPS, and XAS. In the series of monomeric aqua species, stepwise hydrolysis results in the increase of the Tc metal center electron density and corresponding progressive decrease of the Tc-C bond distances, Tc electron binding energies, and carbonyl stretching frequencies in the order [ fac-Tc(CO)3(OH2)3]+ > [ fac-Tc(CO)3(OH2)2(OH)] > [ fac-Tc(CO)3(OH2)(OH)2]-. These results correlate with established trends of the 99Tc upfield chemical shift and carbonyl 13C downfield chemical shift. The lone exception is [ fac-Tc(CO)3(OH)]4 which exhibits a comparatively low electron density at the metal center attributed to the µ3-bridging nature of the -OH ligands causing less σ-donation and no π-donation. This work also reports the first observations of these compounds by XPS and [ fac-Tc(CO)3Cl3]2- by XAS. The unique and distinguishable spectral features of the aqua [ fac-Tc(CO)3]+ complexes lay the foundation for their identification in the complex aqueous matrixes.

10.
Langmuir ; 33(6): 1359-1367, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28099024

RESUMO

Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nanoporous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) were observed with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed nonporous, 12 nm particle size silica and a mesoporous silica with 200 nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. For pure methane, no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2, 32.6, 56.4, 65.1, 112.7, and 130.3 bar). However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD, and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.

11.
Inorg Chem ; 56(5): 2533-2544, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28221786

RESUMO

Insight into the solid-state chemistry of pure technetium-99 (99Tc) oxides is required in the development of a robust immobilization and disposal system for nuclear waste stemming from the radiopharmaceutical industry, from the production of nuclear weapons, and from spent nuclear fuel. However, because of its radiotoxicity and the subsequent requirement of special facilities and handling procedures for research, only a few studies have been completed, many of which are over 20 years old. In this study, we report the synthesis of pure alkali pertechnetates (sodium, potassium, rubidium, and cesium) and analysis of these compounds by Raman spectroscopy, X-ray absorption spectroscopy (XANES and EXAFS), solid-state nuclear magnetic resonance (static and magic angle spinning), and neutron diffraction. The structures and spectral signatures of these compounds will aid in refining the understanding of 99Tc incorporation into and release from nuclear waste glasses. NaTcO4 shows aspects of the relatively higher electronegativity of the Na atom, resulting in large distortions of the pertechnetate tetrahedron and deshielding of the 99Tc nucleus relative to the aqueous TcO4-. At the other extreme, the large Cs and Rb atoms interact only weakly with the pertechnetate, have closer to perfect tetrahedral symmetry at the Tc atom, and have very similar vibrational spectra, even though the crystal structure of CsTcO4 is orthorhombic while that of RbTcO4 is tetragonal. Further trends are observed in the cell volume and quadrupolar coupling constant.

12.
Environ Sci Technol ; 51(19): 11011-11019, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28884577

RESUMO

The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford's cribs (Hanford, WA). During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO2)(PO4)·3H2O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K2(UO2)6O4(OH)6·7H2O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitated as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67 × 10-12 mol g-1 s-1. In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42 × 10-10 mol g-1 s-1. The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for the prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.


Assuntos
Sedimentos Geológicos/química , Minerais/química , Fosfatos/química , Resíduos Radioativos/análise , Compostos de Urânio/química , Urânio/química , Poluentes Radioativos da Água/química , Monitoramento Ambiental , Poluentes Radioativos da Água/análise , Tempo (Meteorologia)
13.
Phys Chem Chem Phys ; 19(41): 28163-28174, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29022609

RESUMO

We present the numerical optimization and experimental characterization of two microstrip-based nuclear magnetic resonance (NMR) detectors. The first detector, introduced in our previous work, was a flat wire detector with a strip resting on a substrate, and the second detector was created by adding a ground plane on top of the strip conductor, separated by a sample-carrying capillary and a thin layer of insulator. The dimensional parameters of the detectors were optimized using numerical simulations with regards to radio frequency (RF) sensitivity and homogeneity, with particular attention given to the effect of the ground plane. The influence of copper surface finish and substrate surface on the spectral resolution was investigated, and a resolution of 0.8-1.5 Hz was obtained on 1 nL deionized water depending on sample positioning. For 0.13 nmol sucrose (0.2 M in 0.63 nL H2O) encapsulated between two Fluorinert plugs, high RF homogeneity (A810°/A90° = 70-80%) and high sensitivity (expressed in the limit of detection nLODm = 0.73-1.21 nmol s1/2) were achieved, allowing for high-performance 2D NMR spectroscopy of subnanoliter samples.

14.
Langmuir ; 32(24): 6194-209, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27243116

RESUMO

Molecular dynamics simulations, conventional and metadynamics, were performed to determine the interaction of model protein Gb1 over kaolinite (001), Na(+)-montmorillonite (001), Ca(2+)-montmorillonite (001), goethite (100), and Na(+)-birnessite (001) mineral surfaces. Gb1, a small (56 residue) protein with a well-characterized solution-state nuclear magnetic resonance (NMR) structure and having α-helix, 4-fold ß-sheet, and hydrophobic core features, is used as a model protein to study protein soil mineral interactions and gain insights on structural changes and potential degradation of protein. From our simulations, we observe little change to the hydrated Gb1 structure over the kaolinite, montmorillonite, and goethite surfaces relative to its solvated structure without these mineral surfaces present. Over the Na(+)-birnessite basal surface, however, the Gb1 structure is highly disturbed as a result of interaction with this birnessite surface. Unraveling of the Gb1 ß-sheet at specific turns and a partial unraveling of the α-helix is observed over birnessite, which suggests specific vulnerable residue sites for oxidation or hydrolysis possibly leading to fragmentation.

15.
Inorg Chem ; 55(17): 8341-7, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27518482

RESUMO

Technetium-99 (Tc) displays a rich chemistry due to its wide range of accessible oxidation states (from -I to +VII) and ability to form coordination compounds. Determination of Tc speciation in complex mixtures is a major challenge, and (99)Tc nuclear magnetic resonance (NMR) spectroscopy is widely used to probe chemical environments of Tc in odd oxidation states. However, interpretation of (99)Tc NMR data is hindered by the lack of reference compounds. Density functional theory (DFT) calculations can help to fill this gap, but to date few computational studies have focused on (99)Tc NMR of compounds and complexes. This work evaluates the effectiveness of both pure generalized gradient approximation and their corresponding hybrid functionals, both with and without the inclusion of scalar relativistic effects, to model the (99)Tc NMR spectra of Tc(I) carbonyl compounds. With the exception of BLYP, which performed exceptionally well overall, hybrid functionals with inclusion of scalar relativistic effects are found to be necessary to accurately calculate (99)Tc NMR spectra. The computational method developed was used to tentatively assign an experimentally observed (99)Tc NMR peak at -1204 ppm to fac-Tc(CO)3(OH)3(2-). This study examines the effectiveness of DFT computations for interpretation of the (99)Tc NMR spectra of Tc(I) coordination compounds in high salt alkaline solutions.

16.
Environ Sci Technol ; 50(7): 3486-93, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26974439

RESUMO

The ability of plants and microorganisms to take up organic nitrogen in the form of free amino acids and oligopeptides has received increasing attention over the last two decades, yet the mechanisms for the formation of such compounds in soil environments remain poorly understood. We used Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies to distinguish the reaction of a model protein with a pedogenic oxide (Birnessite, MnO2) from its response to a phyllosilicate (Kaolinite). Our data demonstrate that birnessite fragments the model protein while kaolinite does not, resulting in soluble peptides that would be available to soil biota and confirming the existence of an abiotic pathway for the formation of organic nitrogen compounds for direct uptake by plants and microorganisms. The absence of reduced Mn(II) in the solution suggests that birnessite acts as a catalyst rather than an oxidant in this reaction. NMR and EPR spectroscopies are shown to be valuable tools to observe these reactions and capture the extent of protein transformation together with the extent of mineral response.


Assuntos
Proteínas de Bactérias/metabolismo , Biota , Compostos de Manganês/química , Oligopeptídeos/farmacologia , Óxidos/química , Solo , Proteínas de Bactérias/química , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Minerais/química , Oxirredução , Domínios Proteicos , Proteólise
17.
Langmuir ; 31(27): 7533-43, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26079871

RESUMO

Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and postreaction samples were examined by ex situ techniques, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), focused ion beam transmission electron microscopy (FIB-TEM), thermal gravimetric analysis mass spectrometry (TGA-MS), and magic angle spinning nuclear magnetic resonance (MAS NMR). Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 µmol/m(2). Above this concentration and up to 76 µmol/m(2), monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 µmol/m(2), crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, these results suggest that mineral carbonation in scCO2 dominated fluids near the wellbore and adjacent to caprocks will be insignificant and limited to surface complexation, unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.

18.
Phys Chem Chem Phys ; 17(20): 13307-14, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25920549

RESUMO

A novel [Mg2(µ-Cl)2](2+) cation complex, which is highly active for reversible Mg electrodeposition, was identified for the first time in this work. This complex was found to be present in electrolytes formulated in dimethoxyethane (DME) through dehalodimerization of non-nucleophilic MgCl2 by reacting with either Mg salts (such as Mg(TFSI)2, TFSI = bis(trifluoromethane)sulfonylimide) or Lewis acid salts (such as AlEtCl2 or AlCl3). The molecular structure of the cation complex was characterized by single crystal X-ray diffraction, Raman spectroscopy and NMR. The electrolyte synthesis process was studied and rational approaches for formulating highly active electrolytes were proposed. Through control of the anions, electrolytes with an efficiency close to 100%, a wide electrochemical window (up to 3.5 V) and a high ionic conductivity (>6 mS cm(-1)) were obtained. The understanding of electrolyte synthesis in DME developed in this work could bring significant opportunities for the rational formulation of electrolytes of the general formula [Mg2(µ-Cl)2][anion]x for practical Mg batteries.

19.
J Vac Sci Technol A ; 31(5): 50820, 2013 09.
Artigo em Inglês | MEDLINE | ID: mdl-24482557

RESUMO

This review examines characterization challenges inherently associated with understanding nanomaterials and the roles surface and interface characterization methods can play in meeting some of the challenges. In parts of the research community, there is growing recognition that studies and published reports on the properties and behaviors of nanomaterials often have reported inadequate or incomplete characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. With the increasing importance of nanomaterials in fundamental research and technological applications, it is desirable that researchers from the wide variety of disciplines involved recognize the nature of these often unexpected challenges associated with reproducible synthesis and characterization of nanomaterials, including the difficulties of maintaining desired materials properties during handling and processing due to their dynamic nature. It is equally valuable for researchers to understand how characterization approaches (surface and otherwise) can help to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. Appropriate application of traditional surface sensitive analysis methods (including x-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy, and secondary ion mass spectroscopy) can provide information that helps address several of the analysis needs. In many circumstances, extensions of traditional data analysis can provide considerably more information than normally obtained from the data collected. Less common or evolving methods with surface selectivity (e.g., some variations of nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) can provide information about surfaces or interfaces in working environments (operando or in situ) or information not provided by more traditional methods. Although these methods may require instrumentation or expertise not generally available, they can be particularly useful in addressing specific questions, and examples of their use in nanomaterial research are presented.

20.
ACS Cent Sci ; 9(2): 266-276, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36844483

RESUMO

We have screened an array of 23 metals deposited onto the metal-organic framework (MOF) NU-1000 for propyne dimerization to hexadienes. By a first-of-its-kind study utilizing data-driven algorithms and high-throughput experimentation (HTE) in MOF catalysis, yields on Cu-deposited NU-1000 were improved from 0.4 to 24.4%. Characterization of the best-performing catalysts reveal conversion to hexadiene to be due to the formation of large Cu nanoparticles, which is further supported by reaction mechanisms calculated with density functional theory (DFT). Our results demonstrate both the strengths and weaknesses of the HTE approach. As a strength, HTE excels at being able to find interesting and novel catalytic activity; any a priori theoretical approach would be hard-pressed to find success, as high-performing catalysts required highly specific operating conditions difficult to model theoretically, and initial simple single-atom models of the active site did not prove representative of the nanoparticle catalysts responsible for conversion to hexadiene. As a weakness, our results show how the HTE approach must be designed and monitored carefully to find success; in our initial campaign, only minor catalytic performances (up to 4.2% yield) were achieved, which were only improved following a complete overhaul of our HTE approach and questioning our initial assumptions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA