Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 379(2195): 20190551, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33641461

RESUMO

As climate change alters flood risk, there is a need to project changes in flooding for water resource management, infrastructure design and planning. The use of observed temperature relationships for informing changes in hydrologic extremes takes many forms, from simple proportional change approaches to conditioning stochastic rainfall generation on observed temperatures. Although generally focused on understanding changes to precipitation, there is an implied transfer of information gained from precipitation-temperature sensitivities to flooding as extreme precipitation is often responsible for flooding. While reviews of precipitation-temperature sensitivities and the non-stationarity of flooding exist, little attention has been given to the intersection of these two topics. Models which use temperature as a covariate to assess the non-stationarity of extreme precipitation outperform both stationary models and those using a temporal trend as a covariate. But care must be taken when projecting changes in flooding on the basis on precipitation-temperature sensitivities, as antecedent conditions modify the runoff response. Although good agreement is found between peak flow-temperature sensitivities and historical trends across Australia, there remains little evaluation of flood projections using temperature sensitivities globally. Significant work needs to be done before the use of temperature as a covariate for flood projection can be adopted with confidence. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.

2.
Philos Trans A Math Phys Eng Sci ; 379(2195): 20190623, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33641456

RESUMO

It is now well established that our warming planet is experiencing changes in extreme storms and floods, resulting in a need to better specify hydrologic design guidelines that can be projected into the future. This paper attempts to summarize the nature of changes occurring and the impact they are having on the design flood magnitude, with a focus on the urban catchments that we will increasingly reside in as time goes on. Two lines of reasoning are used to assess and model changes in design hydrology. The first of these involves using observed storms and soil moisture conditions and projecting how these may change into the future. The second involves using climate model simulations of the future and using them as inputs into hydrologic models to assess the changed design estimates. We discuss here the limitations in both and suggest that the two are, in fact, linked, as climate model projections for the future are needed in the first approach to form meaningful projections for the future. Based on the author's experience with both lines of reasoning, this invited commentary presents a theoretical narrative linking these two and identifying factors and assumptions that need to be validated before implementation in practice. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.

3.
Philos Trans A Math Phys Eng Sci ; 379(2195): 20190548, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33641459

RESUMO

Research into potential implications of climate change on flood hazard has made significant progress over the past decade, yet efforts to translate this research into practical guidance for flood estimation remain in their infancy. In this commentary, we address the question: how best can practical flood guidance be modified to incorporate the additional uncertainty due to climate change? We begin by summarizing the physical causes of changes in flooding and then discuss common methods of design flood estimation in the context of uncertainty. We find that although climate science operates across aleatory, epistemic and deep uncertainty, engineering practitioners generally only address aleatory uncertainty associated with natural variability through standards-based approaches. A review of existing literature and flood guidance reveals that although research efforts in hydrology do not always reflect the methods used in flood estimation, significant progress has been made with many jurisdictions around the world now incorporating climate change in their flood guidance. We conclude that the deep uncertainty that climate change brings signals a need to shift towards more flexible design and planning approaches, and future research effort should focus on providing information that supports the range of flood estimation methods used in practice. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.

4.
Philos Trans A Math Phys Eng Sci ; 379(2195): 20190542, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33641464

RESUMO

A large number of recent studies have aimed at understanding short-duration rainfall extremes, due to their impacts on flash floods, landslides and debris flows and potential for these to worsen with global warming. This has been led in a concerted international effort by the INTENSE Crosscutting Project of the GEWEX (Global Energy and Water Exchanges) Hydroclimatology Panel. Here, we summarize the main findings so far and suggest future directions for research, including: the benefits of convection-permitting climate modelling; towards understanding mechanisms of change; the usefulness of temperature-scaling relations; towards detecting and attributing extreme rainfall change; and the need for international coordination and collaboration. Evidence suggests that the intensity of long-duration (1 day+) heavy precipitation increases with climate warming close to the Clausius-Clapeyron (CC) rate (6-7% K-1), although large-scale circulation changes affect this response regionally. However, rare events can scale at higher rates, and localized heavy short-duration (hourly and sub-hourly) intensities can respond more strongly (e.g. 2 × CC instead of CC). Day-to-day scaling of short-duration intensities supports a higher scaling, with mechanisms proposed for this related to local-scale dynamics of convective storms, but its relevance to climate change is not clear. Uncertainty in changes to precipitation extremes remains and is influenced by many factors, including large-scale circulation, convective storm dynamics andstratification. Despite this, recent research has increased confidence in both the detectability and understanding of changes in various aspects of intense short-duration rainfall. To make further progress, the international coordination of datasets, model experiments and evaluations will be required, with consistent and standardized comparison methods and metrics, and recommendations are made for these frameworks. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.

6.
Sci Rep ; 7(1): 7945, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801569

RESUMO

There is overwhelming consensus that the intensity of heavy precipitation events is increasing in a warming world. It is generally expected such increases will translate to a corresponding increase in flooding. Here, using global data sets for non-urban catchments, we investigate the sensitivity of extreme daily precipitation and streamflow to changes in daily temperature. We find little evidence to suggest that increases in heavy rainfall events at higher temperatures result in similar increases in streamflow, with most regions throughout the world showing decreased streamflow with higher temperatures. To understand why this is the case, we assess the impact of the size of the catchment and the rarity of the event. As the precipitation event becomes more extreme and the catchment size becomes smaller, characteristics such as the initial moisture in the catchment become less relevant, leading to a more consistent response of precipitation and streamflow extremes to temperature increase. Our results indicate that only in the most extreme cases, for smaller catchments, do increases in precipitation at higher temperatures correspond to increases in streamflow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA