Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 110(2): 503-513, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26789772

RESUMO

The blood-brain barrier, mainly composed of brain microvascular endothelial cells, poses an obstacle to drug delivery to the brain. Controlled permeabilization of the constituent brain endothelial cells can result in overcoming this barrier and increasing transcellular transport across it. Electroporation is a biophysical phenomenon that has shown potential in permeabilizing and overcoming this barrier. In this study we developed a microengineered in vitro model to characterize the permeabilization of adhered brain endothelial cells to large molecules in response to applied pulsed electric fields. We found the distribution of affected cells by reversible and irreversible electroporation, and quantified the uptaken amount of naturally impermeable molecules into the cells as a result of applied pulse magnitude and number of pulses. We achieved 81 ± 1.7% (N = 6) electroporated cells with 17 ± 8% (N = 5) cell death using an electric-field magnitude of ∼580 V/cm and 10 pulses. Our results provide the proper range for applied electric-field intensity and number of pulses for safe permeabilization without significantly compromising cell viability. Our results demonstrate that it is possible to permeabilize the endothelial cells of the BBB in a controlled manner, therefore lending to the feasibility of using pulsed electric fields to increase drug transport across the BBB through the transcellular pathway.


Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Eletroporação/métodos , Células Endoteliais/metabolismo , Animais , Linhagem Celular , Eletroporação/instrumentação , Camundongos , Microfluídica/instrumentação , Microfluídica/métodos
2.
Lab Chip ; 21(11): 2095-2120, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34008661

RESUMO

Interest in recapitulating in vivo phenomena in vitro using organ-on-a-chip technology has grown rapidly and with it, attention to the types of fluid flow experienced in the body has followed suit. These platforms offer distinct advantages over in vivo models with regards to human relevance, cost, and control of inputs (e.g., controlled manipulation of biomechanical cues from fluid perfusion). Given the critical role biophysical forces play in several tissues and organs, it is therefore imperative that engineered in vitro platforms capture the complex, unique flow profiles experienced in the body that are intimately tied with organ function. In this review, we outline the complex and unique flow regimes experienced by three different organ systems: blood vasculature, lymphatic vasculature, and the intestinal system. We highlight current state-of-the-art platforms that strive to replicate physiological flows within engineered tissues while introducing potential limitations in current approaches.


Assuntos
Engenharia Tecidual , Humanos
3.
Bioelectrochemistry ; 131: 107369, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31706114

RESUMO

High-frequency irreversible electroporation (H-FIRE) is an emerging electroporation-based therapy used to ablate cancerous tissue. Treatment consists of delivering short, bipolar pulses (1-10µs) in a series of 80-100 bursts (1 burst/s, 100µs on-time). Reducing pulse duration leads to reduced treatment volumes compared to traditional IRE, therefore larger voltages must be applied to generate ablations comparable in size. We show that adjuvant calcium enhances ablation area in vitro for H-FIRE treatments of several pulse durations (1, 2, 5, 10µs). Furthermore, H-FIRE treatment using 10µs pulses delivered with 1mM CaCl2 results in cell death thresholds (771±129V/cm) comparable to IRE thresholds without calcium (698±103V/cm). Quantifying the reversible electroporation threshold revealed that CaCl2 enhances the permeabilization of cells compared to a NaCl control. Gene expression analysis determined that CaCl2 upregulates expression of eIFB5 and 60S ribosomal subunit genes while downregulating NOX1/4, leading to increased signaling in pathways that may cause necroptosis. The opposite was found for control treatment without CaCl2 suggesting cells experience an increase in pro survival signaling. Our study is the first to identify key genes and signaling pathways responsible for differences in cell response to H-FIRE treatment with and without calcium.


Assuntos
Cloreto de Cálcio/farmacologia , Morte Celular/efeitos dos fármacos , Eletroporação/métodos , Animais , Linhagem Celular Tumoral , Humanos , Hidrogéis , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
4.
Biofabrication ; 13(1)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32977323

RESUMO

Various types of embolization devices have been developed for the treatment of cerebral aneurysms. However, it is challenging to properly evaluate device performance and train medical personnel for device deployment without the aid of functionally relevant models. Currentin vitroaneurysm models suffer from a lack of key functional and morphological features of brain vasculature that limit their applicability for these purposes. These features include the physiologically relevant mechanical properties and the dynamic cellular environment of blood vessels subjected to constant fluid flow. Herein, we developed three-dimensionally (3D) printed aneurysm-bearing vascularized tissue structures using gelatin-fibrin hydrogel of which the inner vessel walls were seeded with human cerebral microvascular endothelial cells (hCMECs). The hCMECs readily exhibited cellular attachment, spreading, and confluency all around the vessel walls, including the aneurysm walls. Additionally, thein vitroplatform was directly amenable to flow measurements via particle image velocimetry, enabling the direct assessment of the vascular flow dynamics for comparison to a 3D computational fluid dynamics model. Detachable coils were delivered into the printed aneurysm sac through the vessel using a microcatheter and static blood plasma clotting was monitored inside the aneurysm sac and around the coils. This biomimeticin vitroaneurysm model is a promising method for examining the biocompatibility and hemostatic efficiency of embolization devices and for providing hemodynamic information which would aid in predicting aneurysm rupture or healing response after treatment.


Assuntos
Bioimpressão , Embolização Terapêutica , Aneurisma Intracraniano , Prótese Vascular , Células Endoteliais , Humanos , Aneurisma Intracraniano/terapia
5.
Ann Biomed Eng ; 45(11): 2535-2547, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28849278

RESUMO

Irreversible electroporation (IRE) is a cellular ablation method used to treat a variety of cancers. IRE works by exposing tissues to pulsed electric fields which cause cell membrane disruption. Cells exposed to lower energies become temporarily permeable while greater energy exposure results in cell death. For IRE to be used safely in the brain, methods are needed to extend the area of ablation without increasing applied voltage, and thus, thermal damage. We present evidence that IRE used with adjuvant calcium (5 mM CaCl2) results in a nearly twofold increase in ablation area in vitro compared to IRE alone. Adjuvant 5 mM CaCl2 induces death in cells reversibly electroporated by IRE, thereby lowering the electric field thresholds required for cell death to nearly half that of IRE alone. The calcium-induced death response of reversibly electroporated cells is confirmed by electrochemotherapy pulses which also induced cell death with calcium but not without. These findings, combined with our numerical modeling, suggest the ability to ablate up to 3.2× larger volumes of tissue in vivo when combining IRE and calcium. The ability to ablate a larger volume with lowered energies would improve the efficacy and safety of IRE therapy.


Assuntos
Técnicas de Ablação , Adjuvantes Farmacêuticos/farmacologia , Cloreto de Cálcio/farmacologia , Eletroporação , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Colágeno , Glioblastoma/terapia , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA