Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Neuropathology ; 42(6): 488-504, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35701899

RESUMO

The formation of misfolded protein aggregates is one of the pathological hallmarks of neurodegenerative diseases. We have previously demonstrated the cytoplasmic aggregate formation of adenovirally expressed transactivation response DNA-binding protein of 43 kDa (TDP-43), the main constituent of neuronal cytoplasmic aggregates in cases of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), in cultured neuronal cells under the condition of proteasome inhibition. The TDP-43 aggregate formation was markedly suppressed by co-infection of adenoviruses expressing heat shock transcription factor 1 (HSF1), a master regulator of heat shock response, and Praja1 RING-finger E3 ubiquitin ligase (PJA1) located downstream of the HSF1 pathway. In the present study, we examined other reportedly known E3 ubiquitin ligases for TDP-43, i.e. Parkin, RNF112 and RNF220, but failed to find their suppressive effects on neuronal cytoplasmic TDP-43 aggregate formation, although they all bind to TDP-43 as verified by co-immunoprecipitation. In contrast, PJA1 also binds to adenovirally expressed wild-type and mutated fused in sarcoma, superoxide dismutase 1, α-synuclein and ataxin-3, and huntingtin polyglutamine proteins in neuronal cultures and suppressed the aggregate formation of these proteins. These results suggest that PJA1 is a common sensing factor for aggregate-prone proteins to counteract their aggregation propensity, and could be a potential therapeutic target for neurodegenerative diseases that include ALS, FTLD, Parkinson's disease and polyglutamine diseases.


Assuntos
Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Doenças Neurodegenerativas , Ubiquitina-Proteína Ligases , Esclerose Lateral Amiotrófica/patologia , Degeneração Lobar Frontotemporal/patologia , Fatores de Transcrição de Choque Térmico , Agregados Proteicos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais
2.
J Neurochem ; 156(6): 957-966, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32852783

RESUMO

Patients with transthyretin (TTR)-type familial amyloid polyneuropathy (FAP) typically exhibit sensory dominant polyneuropathy and autonomic neuropathy. However, the molecular pathogenesis of the neuropathy remains unclear. In this study, we characterize the features of FAP TTR the substitution of lysine for glutamic acid at position 61 (E61K). This FAP was late-onset, with sensory dominant polyneuropathy, autonomic neuropathy, and cardiac amyloidosis. Interestingly, no amyloid deposits were found in the endoneurium of the four nerve specimens examined. Therefore, we examined the amyloidogenic properties of E61K TTR in vitro. Recombinant wild-type TTR, the substitution of methionine for valine at position 30 (V30M) TTR, and E61K TTR proteins were incubated at 37°C for 72 hr, and amyloid fibril formation was assessed using the thioflavin-T binding assay. Amyloid fibril formation by E61K TTR was less than that by V30M TTR, and similar to that by wild-type TTR. E61K TTR did not have an inhibitory effect on neurite outgrowth from adult rat dorsal root ganglion (DRG) neurons, but V30M TTR did. Furthermore, we studied the sural nerve of our patient by terminal deoxynucleotidyl transferase dUTP nick end labeling and electron microscopy. A number of apoptotic cells were observed in the endoneurium of the nerve by transferase dUTP nick end labeling. Chromatin condensation was confirmed in the nucleus of non-myelinating Schwann cells by electron microscopy. These findings suggest that E61K TTR is low amyloidogenic, in vitro and in vivo. However, TTR aggregates and amyloid fibrils in the DRG may cause sensory impairments in FAP because the DRG has no blood-nerve barrier. Moreover, Schwann cell apoptosis may contribute to the neurodegeneration.


Assuntos
Neuropatias Amiloides Familiares/genética , Amiloide/biossíntese , Pré-Albumina/genética , Substituição de Aminoácidos , Amiloide/genética , Amiloidose/patologia , Animais , Apoptose , Cristalografia por Raios X , Humanos , Mutação , Nervos Periféricos/patologia , Placa Amiloide/patologia , Pré-Albumina/química , Ratos , Ratos Wistar , Proteínas Recombinantes/farmacologia , Células de Schwann/metabolismo , Nervo Sural/patologia
3.
Neuropathology ; 40(6): 570-586, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32686212

RESUMO

Transactivation response DNA-binding protein of 43 kDa (TDP-43) is a major constituent of cytoplasmic aggregates in neuronal and glial cells in cases of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). We have previously shown neuronal cytoplasmic aggregate formation induced by recombinant adenoviruses expressing human wild-type and C-terminal fragment (CTF) TDP-43 under the condition of proteasome inhibition in vitro and in vivo. In the present study, we demonstrated that the formation of the adenoviral TDP-43 aggregates was markedly suppressed in rat neural stem cell-derived neuronal cells by co-infection of an adenovirus expressing heat shock transcription factor 1 (HSF1), a master regulator of heat shock response. We performed DNA microarray analysis and searched several candidate molecules, located downstream of HSF1, which counteract TDP-43 aggregate formation. Among these, we identified Praja 1 RING-finger E3 ubiquitin ligase (PJA1) as a suppressor of phosphorylation and aggregate formation of TDP-43. Co-immunoprecipitation assay revealed that PJA1 binds to CTF TDP-43 and the E2-conjugating enzyme UBE2E3. PJA1 also suppressed formation of cytoplasmic phosphorylated TDP-43 aggregates in mouse facial motor neurons in vivo. Furthermore, phosphorylated TDP-43 aggregates were detected in PJA1-immunoreactive human ALS motor neurons. These results indicate that PJA1 is one of the principal E3 ubiquitin ligases for TDP-43 to counteract its aggregation propensity and could be a potential therapeutic target for ALS and FTLD.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neurônios/patologia , Agregação Patológica de Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Citoplasma/patologia , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Camundongos , Ratos , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia
4.
Neuropathology ; 40(6): 587-598, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33305472

RESUMO

A vast body of evidence implicates increased oxidative stress and extracellular glutamate accumulation in the pathomechanism of sporadic amyotrophic lateral sclerosis (ALS). Cystine/glutamate antiporter (xCT) carries extracellular cystine uptake and intracellular glutamate release (cystine/glutamate exchange) in the presence of oxidative stress. The aim of the present study was to determine the involvement of xCT in ALS. Immunohistochemical observations in the spinal cord sections demonstrated that xCT was mainly expressed in astrocytes, with staining more intense in 12 sporadic ALS patients as compared to 12 age-matched control individuals. Western blot and densitometric analyses of the spinal cord samples revealed that the relative value of xCT/ß-actin optical density ratio was significantly higher in the ALS group as compared to the control group. Next, we conducted cell culture experiments using a human astrocytoma-derived cell line (1321N1) and a mouse motor neuron/neuroblastoma hybrid cell line (NSC34). In 1321N1 cells, the normalized xCT expression levels in cell lysates were significantly increased by H2 O2 treatment. Glutamate concentrations in 1321 N1 cell culture-conditioned media were significantly elevated by H2 O2 treatment, and the H2 O2 -driven elevations were completely canceled by the xCT inhibitor erastin pretreatment. In motor neuron-differentiated NSC34 cells (NSC34d cells), both the normalized xCT expression levels in the cell lysates and glutamate concentrations in the cell-conditioned media were constant with or without H2 O2 treatment. The present results provide in vivo and in vitro evidence that astrocytes upregulate xCT expression to release glutamate in response to increased oxidative stress associated with ALS, contributing to extracellular glutamate accumulation.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Estresse Oxidativo/fisiologia , Esclerose Lateral Amiotrófica/patologia , Animais , Humanos , Camundongos , Medula Espinal/metabolismo , Medula Espinal/patologia , Regulação para Cima
5.
Neuropathology ; 40(2): 152-166, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31883180

RESUMO

Previous studies on sporadic amyotrophic lateral sclerosis (SALS) demonstrated iron accumulation in the spinal cord and increased glutamate concentration in the cerebrospinal fluid. To clarify the relationship between the two phenomena, we first performed quantitative and morphological analyses of substances related to iron and glutamate metabolism using spinal cords obtained at autopsy from 12 SALS patients and 12 age-matched control subjects. Soluble iron content determined by the Ferrozine method as well as ferritin (Ft) and glutaminase C (GLS-C) expression levels on Western blots were significantly higher in the SALS group than in the control group, while ferroportin (FPN) levels on Western blots were significantly reduced in the SALS group as compared to the control group. There was no significant difference in aconitase 1 (ACO1) and tumor necrosis factor-alpha (TNFα)-converting enzyme (TACE) levels on Western blots between the two groups. Immunohistochemically, Ft, ACO1, TACE, TNFα, and GLS-C were proven to be selectively expressed in microglia. Immunoreactivities for FPN and hepcidin were localized in neuronal and glial cells. Based on these observations, it is predicted that soluble iron may stimulate microglial glutamate release. To address this issue, cell culture experiments were carried out on a microglial cell line (BV-2). Treatment of BV-2 cells with ferric ammonium citrate (FAC) brought about significant increases in intracellular soluble iron and Ft expression levels and conditioned medium glutamate and TNFα concentrations. Glutamate concentration was also significantly increased in conditioned media of TNFα-treated BV-2 cells. While the FAC-driven increases in glutamate and TNFα release were completely canceled by pretreatment with ACO1 and TACE inhibitors, respectively, the TNFα-driven increase in glutamate release was completely canceled by GLS-C inhibitor pretreatment. Moreover, treatment of BV-2 cells with hepcidin resulted in a significant reduction in FPN expression levels on Western blots of the intracellular total protein extracts. The present results provide in vivo and in vitro evidence that microglial glutamate release in SALS spinal cords is enhanced by intracellular soluble iron accumulation-induced activation of ACO1 and TACE and by increased extracellular TNFα-stimulated GLS-C upregulation, and suggest a positive feedback mechanism to maintain increased intracellular soluble iron levels, involving TNFα, hepcidin, and FPN.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Ácido Glutâmico/metabolismo , Ferro/metabolismo , Microglia/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medula Espinal/metabolismo , Medula Espinal/patologia
6.
J Neurochem ; 144(6): 710-722, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29238976

RESUMO

The increased glucose flux into the polyol pathway via aldose reductase (AR) is recognized as a major contributing factor for the pathogenesis of diabetic neuropathy, whereas little is known about the functional significance of AR in the peripheral nervous system. Spontaneously immortalized Schwann cell lines established from long-term cultures of AR-deficient and normal C57BL/6 mouse dorsal root ganglia and peripheral nerves can be useful tools for studying the physiological and pathological roles of AR. These cell lines, designated as immortalized knockout AR Schwann cells 1 (IKARS1) and 1970C3, respectively, demonstrated distinctive Schwann cell phenotypes, such as spindle-shaped morphology and immunoreactivity to S100, p75 neurotrophin receptor, and vimentin, and extracellular release of neurotrophic factors. Conditioned media obtained from these cells promoted neuronal survival and neurite outgrowth of cultured adult mouse dorsal root ganglia neurons. Microarray and real-time RT-PCR analyses revealed significantly down-regulated mRNA expression of polyol pathway-related enzymes, sorbitol dehydrogenase and ketohexokinase, in IKARS1 cells compared with those in 1970C3 cells. In contrast, significantly up-regulated mRNA expression of aldo-keto reductases (AKR1B7 and AKR1B8) and aldehyde dehydrogenases (ALDH1L2, ALDH5A1, and ALDH7A1) was detected in IKARS1 cells compared with 1970C3 cells. Exposure to reactive aldehydes (3-deoxyglucosone, methylglyoxal, and 4-hydroxynonenal) significantly up-regulated the mRNA expression of AKR1B7 and AKR1B8 in IKARS1 cells, but not in 1970C3 cells. Because no significant differences in viability between these two cell lines after exposure to these aldehydes were observed, it can be assumed that the aldehyde detoxification is taken over by AKR1B7 and AKR1B8 in the absence of AR.


Assuntos
Aldeído Redutase/metabolismo , Aldeídos/metabolismo , Polímeros/metabolismo , Células de Schwann/metabolismo , Aldeído Redutase/genética , Animais , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular , Meios de Cultivo Condicionados , Feminino , Gânglios Espinais/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios , Nervos Periféricos/citologia , RNA Mensageiro/metabolismo , Transdução de Sinais , Regulação para Cima
7.
Neuropathology ; 37(5): 475-481, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28707715

RESUMO

Myelination is one of the most remarkable biological events in the neuron-glia interactions for the development of the mammalian nervous system. To elucidate molecular mechanisms of cell-to-cell interactions in myelin synthesis in vitro, establishment of the myelinating system in cocultures of continuous neuronal and glial cell lines are desirable. In the present study, we performed co-culture experiments using rat neural stem cell-derived neurons or mouse embryonic stem (ES) cell-derived motoneurons with immortalized rat IFRS1 Schwann cells to establish myelinating cultures between these cell lines. Differentiated neurons derived from an adult rat neural stem cell line 1464R or motoneurons derived from a mouse ES cell line NCH4.3, were mixed with IFRS1 Schwann cells, plated, and maintained in serum-free F12 medium with B27 supplement, ascorbic acid, and glial cell line-derived neurotrophic factor. Myelin formation was demonstrated by electron microscopy at 4 weeks in cocultures of 1464R-derived neurons or NCH4.3-derived motoneurons with IFRS1 Schwann cells. These in vitro coculture systems utilizing the rodent stable stem and Schwann cell lines can be useful in studies of peripheral nerve development and regeneration.


Assuntos
Técnicas de Cocultura/métodos , Bainha de Mielina , Células-Tronco Neurais/citologia , Neurônios/citologia , Células de Schwann/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Camundongos , Ratos
8.
Eur J Neurosci ; 44(1): 1723-33, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27152884

RESUMO

Amiodarone hydrochloride (AMD), an anti-arrhythmic agent, has been shown to cause peripheral neuropathy; however, its pathogenesis remains unknown. We examined the toxic effects of AMD on an immortalized adult rat Schwann cell line, IFRS1, and cocultures of IFRS1 cells and adult rat dorsal root ganglion neurons or nerve growth factor-primed PC12 cells. Treatment with AMD (1, 5, and 10 µm) induced time- and dose-dependent cell death, accumulation of phospholipids and neutral lipids, upregulation of the expression of gangliosides, and oxidative stress (increased nuclear factor E2-related factor in nuclear extracts and reduced GSH/GSSG ratios) in IFRS1 cells. It also induced the upregulation of LC3-II and p62 expression, with phosphorylation of p62, suggesting that deficient autolysosomal degradation is involved in AMD-induced IFRS1 cell death. Furthermore, treatment of the cocultures with AMD induced detachment of IFRS1 cells from neurite networks in a time- and dose-dependent manner. These findings suggest that AMD-induced lysosomal storage accompanied by enhanced oxidative stress and impaired lysosomal degradation in Schwann cells might be a cause of demyelination in the peripheral nervous system.


Assuntos
Doenças Desmielinizantes/metabolismo , Lisossomos/metabolismo , Estresse Oxidativo , Células de Schwann/metabolismo , Amiodarona/toxicidade , Animais , Células Cultivadas , Inibidores Enzimáticos/toxicidade , Feminino , Gânglios Espinais/citologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Células PC12 , Fosfolipídeos/metabolismo , Ratos , Ratos Wistar , Células de Schwann/efeitos dos fármacos
9.
Muscle Nerve ; 54(2): 277-83, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26799526

RESUMO

INTRODUCTION: This study aimed to determine the prognostic factors and the values that predict survival after percutaneous endoscopic gastrostomy (PEG) tube placement in patients with amyotrophic lateral sclerosis (ALS). METHODS: We retrospectively analyzed the correlations for 97 consecutive patients with ALS between clinical parameters and survival following PEG tube placement using the log-rank test and Cox proportional-hazards models. RESULTS: The log-rank test showed that an arterial carbon dioxide pressure (PaCO2 ) of ≤ 40 mmHg (P = 0.0054), a forced vital capacity (FVC) of ≥ 38% of predicted (P = 0.0003), and bulbar-onset (P = 0.0121) were significantly associated with better post-PEG survival. Multivariate analysis showed that the FVC and PaCO2 were associated with better post-PEG survival (P = 0.0081 and P = 0.0265, respectively). CONCLUSIONS: PEG tube placement in ALS is recommended when FVC is ≥ 38% of predicted and when PaCO2 is normal. Muscle Nerve 54: 277-283, 2016.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Endoscopia/métodos , Gastrostomia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Peso Corporal , Nutrição Enteral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Estatísticas não Paramétricas , Capacidade Vital
10.
Neurol Sci ; 37(12): 1939-1945, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27541300

RESUMO

This study aimed to quantitatively analyze fasciculation potentials (FPs) and to investigate their relationship with muscle strength in amyotrophic lateral sclerosis (ALS). Fifty-one patients with sporadic ALS or progressive muscular atrophy (25 men, 26 women, mean age of 68 years) underwent needle EMG. We determined the duration, phase number, and amplitude of FPs from three muscles (upper trapezius, biceps brachii, and tibialis anterior) and examined their relations with muscle strength. In total, 878 FPs were analyzed. FP duration displayed a significant negative relation with the strength of all three muscles; the weaker muscles showed longer durations of FPs than the muscles with normal strength. The amplitude and phase number were not related with muscle strength, but there were significant correlations between the duration and amplitude of FPs in the trapezius and tibialis anterior muscles. The longer duration of FPs in muscles with weak strength suggests that the morphological changes of FPs were caused by temporal dispersion through progressively degenerating and/or immature reinnervating motor branches, and were observed uniformly in different muscles along with disease progression.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Potencial Evocado Motor/fisiologia , Fasciculação/fisiopatologia , Força Muscular/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Estatística como Assunto , Estatísticas não Paramétricas
11.
J Neurochem ; 134(1): 66-74, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25693163

RESUMO

Familial amyloidotic polyneuropathy (FAP) is one of the transthyretin (TTR) amyloidoses characterized by extracellular amyloid deposits and peripheral nerve involvement. Recently, we found significant expression of the TTR gene in Schwann cells of the peripheral nervous system. We hypothesized that local expression of variant TTR in Schwann cells may contribute to neurodegeneration in FAP. Schwann cells derived from the dorsal root ganglia (DRG) of transgenic mice expressing variant human TTR in a mouse null background were cultured long term to obtain spontaneously immortalized cell lines. We established an immortalized Schwann cell line, TgS1, derived from the transgenic mice. TgS1 cells synthesized variant TTR and secreted it into the medium. As sensory neuropathy usually arises early in FAP, we examined the effect of the conditioned medium derived from TgS1 cells on neurite outgrowth from DRG sensory neurons. Conditioned medium derived from TgS1 cells inhibited neurite outgrowth from the sensory neurons. TTR deposition in the DRG of aged transgenic mice was investigated by immunohistochemistry. TTR aggregates were observed in the cytoplasm of Schwann cells and satellite cells. Proteasome inhibition induced TTR aggregates as aggresomes in TgS1 cells. In conclusion, local variant TTR gene expression in Schwann cells might trigger neurodegeneration in FAP. We established a spontaneously immortalized Schwann cell line derived from familial amyloidotic polyneuropathy transgenic mice. Conditioned medium from the cells contained variant transthyretin (TTR), and inhibited neurite outgrowth of neurons. TTR aggregates were observed in the Schwann cells and satellite cells of aged mice. Proteasome inhibition induced TTR aggregates as aggresomes in the cultured cells. These results support the hypothesis that Schwann cells contribute to neurodegeneration in familial amyloidotic polyneuropathy (FAP).


Assuntos
Neuropatias Amiloides Familiares/metabolismo , Degeneração Neural/metabolismo , Pré-Albumina/biossíntese , Células de Schwann/metabolismo , Neuropatias Amiloides Familiares/patologia , Animais , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/patologia , Células de Schwann/patologia
12.
Neuropathology ; 34(4): 360-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24661099

RESUMO

Previously we found that, after temporary cerebral ischemia, microvasculogenic secondary focal cerebral cortical ischemia occurred, caused by microvascular obstruction due to compression by swollen astrocytic end-feet, resulting in focal infarction. Herein, we examined whether mannitol infusion immediately after restoration of blood flow could protect the cerebral cortex against the development of such an infarction. If so, the infusion of mannitol might improve the results of vascular reperfusion therapy. We selected stroke-positive animals during the first 10 min after left carotid occlusion performed twice with a 5-h interval, and allocated them into four groups: sham-operated control, no-treatment, mannitol-infusion, and saline-infusion groups. Light- and electron-microscopic studies were performed on cerebral cortices of coronal sections prepared at the chiasmatic level, where the focal infarction develops abruptly in the area where disseminated selective neuronal necrosis is maturing. Measurements were performed to determine the following: (A) infarct size in HE-stained specimens from all groups at 72 and 120 h after return of blood flow; (B) number of carbon-black-suspension-perfused microvessels in the control and at 0.5, 3, 5, 8, 12 and 24 h in the no-treatment and mannitol-infusion groups; (C) area of astrocytic end-feet; and (D) number of mitochondria in the astrocytic end-feet in electron microscopic pictures taken at 5 h. The average decimal fraction area ratio of infarct size in the mannitol group was significantly reduced at 72 and 120 h, associated with an increased decimal fraction number ratio of carbon-black-suspension-perfused microvessels at 3, 5 and 8 h, and a marked reduction in the size of the end-feet at 5 h. Mannitol infusion performed immediately after restitution of blood flow following temporary cerebral ischemia remarkably reduced the size of the cerebral cortical focal infarction by decreasing the swelling of the end-feet, thus preventing the microvascular compression and stasis and thereby microvasculogenic secondary focal cerebral ischemia.


Assuntos
Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Manitol/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Astrócitos/ultraestrutura , Gerbillinae , Infusões Intravenosas , Masculino , Manitol/administração & dosagem , Microvasos/ultraestrutura , Reperfusão
13.
Neuropathology ; 34(1): 83-98, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23937386

RESUMO

Formation of cytoplasmic aggregates in neuronal and glial cells is one of the pathological hallmarks of amyotrophic lateral sclerosis (ALS). Mutations in two genes encoding transactivation response (TAR) DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS), both of which are main constituents of cytoplasmic aggregates, have been identified in patients with familial and sporadic ALS. Impairment of protein degradation machineries has also been recognized to participate in motoneuron degeneration in ALS. In the present study, we produced recombinant adenovirus vectors encoding wild type and mutant TDP-43 and FUS, and those encoding short hairpin RNAs (shRNAs) for proteasome (PSMC1), autophagy (ATG5), and endosome (VPS24) systems to investigate whether the coupled gene transductions in motoneurons by these adenoviruses elicit ALS pathology. Cultured neurons, astrocytes and oligodendrocytes differentiated from adult rat neural stem cells and motoneurons derived from mouse embryonic stem cells were successfully infected with these adenoviruses showing cytoplasmic aggregate formation. When these adenoviruses were injected into the facial nerves of adult rats, exogenous TDP-43 and FUS proteins were strongly expressed in facial motoneurons by a retrograde axonal transport of the adenoviruses. Co-infections of adenovirus encoding shRNA for PSMC1, ATG5 or VPS24 with TDP-43 or FUS adenovirus enhanced cytoplasmic aggregate formation in facial motoneurons, suggesting that impairment of protein degradation pathways accelerates formation of TDP-43 and FUS-positive aggregates in ALS.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Corpos de Inclusão/ultraestrutura , Neurônios Motores/ultraestrutura , RNA Interferente Pequeno/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Adenoviridae/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Células Cultivadas , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Células HEK293 , Humanos , Corpos de Inclusão/metabolismo , Masculino , Camundongos , Neurônios Motores/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , RNA Interferente Pequeno/genética , Proteína FUS de Ligação a RNA/genética , Ratos , Ratos Endogâmicos F344 , Ratos Mutantes
14.
Neuropathology ; 34(5): 504-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24841222

RESUMO

We describe a Japanese patient with familial amyotrophic lateral sclerosis (ALS) and a p.K510M mutation in the fused in sarcoma gene (FUS). The patient's condition was characterized clinically by an early onset and rapid progression. The patient eventually required mechanical ventilation and progressed to the totally locked-in state. Neuropathologically, multiple system degeneration with many FUS-immunoreactive structures was observed. The involvement of the globus pallidus, subthalamic nucleus, substantia nigra, cerebellar efferent system, and both upper and lower motor neurons in the present patient was comparable to that described for ALS patients with different mutations in FUS, all of whom progressed to the totally locked-in state. However, the patient also exhibited degeneration of the cerebellar afferent system and posterior column. Furthermore, the appearance of non-compact FUS-immunoreactive neuronal cytoplasmic inclusions and many FUS-immunoreactive glial cytoplasmic inclusions were unique to the present patient. These features suggest that the morphological characteristics of the FUS-immunoreactive structures and distribution of the lesions vary with the diversity of mutations in FUS.


Assuntos
Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/genética , Encéfalo/patologia , Proteína FUS de Ligação a RNA/genética , Adulto , Esclerose Lateral Amiotrófica/patologia , Progressão da Doença , Humanos , Masculino , Mutação , Linhagem , Quadriplegia/etiologia
15.
Acta Neurochir Suppl ; 118: 23-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23564099

RESUMO

Astrocytes support neuronal functions by regulating the extracellular ion homeostasis and levels of neurotransmitters, and by providing fuel such as lactate to the neurons via their processes (APs). After two 10-min unilateral carotid occlusions with a 5-h interval in gerbils, we investigated maturing disseminated selective neuronal necrosis (DSNN) on the coronal surface sectioned at the infundibular level. We chronologically counted the normal appearing, degenerated, and dead neurons and astrocytes in the cerebral cortex; observed the ultrastructure of APs, and counted the number of their cut-ends and mitochondria in the neuropil; determined the percentage volume of APs according to Weibel's point-counting method; compared the number of cut-ends and mitochondria and percentage volume of APs around the astrocytes and around the normal-appearing, degenerated, and dead -neurons. Heterogeneous degeneration of APs was concluded to be closely associated with the maturation of DSNN.Using the same model, at the coronally sectioned surface on the chiasmatic level, we investigated the mechanism of development of focal infarction in the maturing DSNN. Same as in the above study, we chronologically counted various neurons and astrocytes; observed and measured the area of the ultrastructure of astrocytic end-feet; counted the number of carbon-black-suspension-perfused microvessels. We concluded that after temporary cerebral ischemia, secondary focal ischemia was induced by microvascular obstruction compressed by swollen astrocytic end-feet, resulting in delayed focal infarction.


Assuntos
Astrócitos/fisiologia , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Animais , Astrócitos/patologia , Astrócitos/ultraestrutura , Contagem de Células , Modelos Animais de Doenças , Progressão da Doença , Gerbillinae , Microscopia Eletrônica de Transmissão , Microvasos/patologia , Microvasos/ultraestrutura , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Neurônios/fisiologia , Fatores de Tempo
16.
Neurochem Int ; 164: 105507, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796540

RESUMO

Hereditary transthyretin (TTR) amyloidosis (ATTRv) is characterized by TTR amyloid deposition in the peripheral nervous system. It remains unknown why variant TTR preferentially deposits in the peripheral nerves and dorsal root ganglia. We previously detected low levels of TTR expression in Schwann cells and established an immortalized Schwann cell line, TgS1, derived from a mouse model of ATTRv amyloidosis expressing the variant TTR gene. In the present study, the expression of TTR and Schwann cell marker genes was investigated in TgS1 cells by quantitative RT-PCR. TTR gene expression was markedly upregulated in TgS1 cells incubated in non-growth medium-Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum. The expression levels of c-Jun, Gdnf and Sox2 were increased, while Mpz was downregulated, suggesting that TgS1 cells exhibit a repair Schwann cell-like phenotype in the non-growth medium. Western blot analysis revealed that TTR protein was produced and secreted by the TgS1 cells. Furthermore, downregulation of Hsf1 with siRNA induced TTR aggregates in the TgS1 cells. These findings indicate that TTR expression is markedly increased in repair Schwann cells, likely to promote axonal regeneration. Therefore, aged dysfunctional repair Schwann cells may cause the deposition of variant TTR aggregates in the nerves of patients with ATTRv.


Assuntos
Neuropatias Amiloides Familiares , Pré-Albumina , Camundongos , Animais , Humanos , Idoso , Pré-Albumina/genética , Pré-Albumina/metabolismo , Neuropatias Amiloides Familiares/genética , Células de Schwann/metabolismo , Gânglios Espinais/metabolismo , Expressão Gênica
17.
Histochem Cell Biol ; 137(6): 829-39, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22366958

RESUMO

Establishing stable coculture systems with neuronal and Schwann cell lines has been considered difficult, presumably because of their high proliferative activity and phenotypic differences from primary cultured cells. The present study is aimed at developing methods for myelin formation under coculture of the neural crest-derived pheochromocytoma cell line PC12 and the immortalized adult rat Schwann cell line IFRS1. Prior to coculture, PC12 cells were seeded at low density (3 × 10(2)/cm(2)) and maintained in serum-free medium with N2 supplement, ascorbic acid (50 µg/ml), and nerve growth factor (NGF) (50 ng/ml) for a week. Exposure to such a NGF-rich environment with minimum nutrients accelerated differentiation and neurite extension, but not proliferation, of PC12 cells. When IFRS1 cells were added to NGF-primed PC12 cells, the cell density ratio of PC12 cells to IFRS1 cells was adjusted from 1:50 to 1:100. The cocultured cells were then maintained in serum-free medium with B27 supplement, ascorbic acid (50 µg/ml), NGF (10 ng/ml), and recombinant soluble neuregulin-1 type III (25 ng/ml). Myelin formation was illustrated by light and electron microscopy performed at day 28 of coculture. The stable PC12-IFRS1 coculture system is free of technical and ethical problems arising from the primary culture and can be a valuable tool to study peripheral nerve degeneration and regeneration.


Assuntos
Bainha de Mielina/metabolismo , Neurônios/citologia , Células de Schwann/citologia , Animais , Diferenciação Celular , Técnicas de Cocultura , Fatores de Crescimento Neural/farmacologia , Neuregulina-1/metabolismo , Neuritos/fisiologia , Neurônios/metabolismo , Células PC12 , Ratos , Células de Schwann/metabolismo
18.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35890141

RESUMO

Edaravone is a free-radical scavenger drug that was recently approved for the treatment of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease. A pathological hallmark of ALS is the accumulation of ubiquitinated or phosphorylated aggregates of the 43-kDa transactive response DNA binding protein (TDP-43) within the cytoplasm of motor neurons. This study revealed the efficacy of edaravone in preventing neuronal cell death in a TDP-43 proteinopathy model and analyzed the molecular changes associated with the neuroprotection. The viability of the neuronal cells expressing TDP-43 was reduced by oxidative stress, and edaravone (≥10 µmol/L) protected in a concentration-dependent manner against the neurotoxic insult. Differential gene expression analysis revealed changes among pathways related to nuclear erythroid 2-related-factor (Nrf2)-mediated oxidative stress response in cells expressing TDP-43. In edaravone-treated cells expressing TDP-43, significant changes in gene expression were also identified among Nrf2-oxidative response, unfolded protein response, and autophagy pathways. In addition, the expression of genes belonging to phosphatidylinositol metabolism pathways was modified. These findings suggest that the neuroprotective effect of edaravone involves the prevention of TDP-43 misfolding and enhanced clearance of pathological TDP-43 in TDP-43 proteinopathy.

19.
J Neurosci Res ; 89(6): 898-908, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21394758

RESUMO

We established spontaneously immortalized Schwann cell lines from long-term cultures of adult Fischer 344 rat dorsal root ganglia (DRG) and peripheral nerves. One of these cell lines, designated immortalized Fischer rat Schwann cells 1 (IFRS1), showed spindle-shaped morphology; immunoreactivity for S100, p75 neurotrophin receptor (p75(NTR) ), glial fibrillary acidic protein (GFAP), laminin, and vimentin; and mRNA expression of neurotrophic factors (NGF, GDNF, and CNTF), neurotrophin receptors (p75(NTR) , truncated TrkB, and TrkC), cell adhesion molecules (L1, NCAM, and N-cadherin), myelin proteins [P0, PMP22, and myelin-associated glycoprotein (MAG)], transcription factors (Krox20, Sox10, and Oct6), neuregulin-1 receptors (ErbB2 and ErbB3), and an orphan G protein-coupled receptor (Gpr126). Conditioned medium (CM) obtained from IFRS1 cells exhibited potent biological activity for the promotion of neuronal survival and neurite outgrowth of cultured adult rat DRG neurons. Furthermore, light and electron microscopic analyses revealed that IFRS1 cells were capable of myelinating neurites while in coculture with adult rat DRG neurons. These findings indicate that IFRS1 cells possess some biological properties of mature Schwann cells and that the coculture system with adult DRG neurons and IFRS1 cells can be a useful tool for the study of peripheral nerve degeneration and regeneration.


Assuntos
Comunicação Celular/fisiologia , Neurônios/fisiologia , Células de Schwann/fisiologia , Animais , Compostos Azo , Linhagem Celular Transformada/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Relação Dose-Resposta a Droga , Gânglios Espinais/citologia , Regulação da Expressão Gênica/fisiologia , Óperon Lac/genética , Microscopia Eletrônica de Transmissão/métodos , Proteína Básica da Mielina/metabolismo , Proteína P0 da Mielina/metabolismo , Naftalenos , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neurônios/efeitos dos fármacos , Nervos Periféricos/citologia , Ratos , Ratos Endogâmicos F344 , Ratos Wistar , Células de Schwann/química , Células de Schwann/ultraestrutura , Transfecção/métodos , Tubulina (Proteína)/metabolismo
20.
Amyotroph Lateral Scler ; 12(5): 356-62, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21434813

RESUMO

Amyotrophic lateral sclerosis (ALS) shows peculiar abnormalities of the autonomic nervous system, including sympathetic hyperactivity, which might result in sudden death. In general, the sympathetic hyperactivity could be caused by disruption of vagal inhibition. Our objective was to evaluate the vagus nerve morphometrically in autopsy cases of ALS with sympathetic hyperactivity and circulatory collapse (CC). We investigated 10 autopsied ALS patients, six of whom had exhibited autonomic storms or CC. We also examined 10 patients without ALS as controls, and one patient with Guillain-Barré syndrome (GBS) who died from CC, for comparison. After obtaining the visceral branch of the left vagus nerve at necropsy, we analyzed the density of the myelinated and unmyelinated fibers, and the fiber diameter distribution for each fiber. Results showed that the densities of both myelinated and unmyelinated fibers in ALS patients with or without CC were not significantly different from those in control patients. In contrast, the GBS patient showed marked reduction in the whole myelinated and large unmyelinated fiber density. In conclusion, the autonomic storms or CC due to sympathetic hyperactivity in ALS could not be ascribed to the deafferentation of the baroreflex, and more central neural pathophysiology should be investigated.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Choque/patologia , Nervo Vago/patologia , Idoso , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/fisiopatologia , Pressão Sanguínea/fisiologia , Ritmo Circadiano/fisiologia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Choque/complicações , Choque/fisiopatologia , Nervo Vago/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA