Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-25522711

RESUMO

Resveratrol is a naturally occurring antioxidant that has been widely studied in mammals due to its potential to extend lifespan. However, antioxidants may also limit protein damage and therefore reduce rates of protein degradation, providing a potential avenue for enhancing growth in an aquaculture setting. The present study tested the hypotheses that in Southern flounder, Paralichthys lethostigma, resveratrol would decrease protein carbonylation and 4-HNE (indicators of protein and lipid oxidative damage, respectively), levels of ubiquitinylation and LC3 (indicators of non-lysosomal and lysosomal protein degradation, respectively), while having no effect on S6K activation (indicator of protein synthesis). These effects were predicted to increase growth rate. Mitochondrial volume density was also examined since resveratrol may lead to the proliferation of mitochondria, which are the principal source of reactive oxygen species (ROS) that cause oxidative damage. Juvenile fish (n=142) were fed a control diet or a diet supplemented with 600 µg resveratrol per g of food for 16 weeks. Fish treated with resveratrol had a 9% greater length and 33% greater body mass than control fish after 16 weeks. Additionally, there was lower protein carbonylation and lipid 4-HNE within the muscle tissues of treated fish, indicating decreased oxidative damage, and reduced protein ubiquitinylation in the resveratrol fed flounder, indicating less protein degradation. However, there was not a significant difference in LC3, S6K activation, or mitochondrial volume density. These results suggest that resveratrol has positive effects on growth due to its antioxidant properties that reduce non-lysosomal protein degradation.


Assuntos
Proteínas de Peixes/metabolismo , Linguado/crescimento & desenvolvimento , Músculo Esquelético/efeitos dos fármacos , Estilbenos/farmacologia , Ração Animal , Animais , Suplementos Nutricionais , Linguado/fisiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/fisiologia , Carbonilação Proteica/efeitos dos fármacos , Resveratrol , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Ubiquitinação
2.
J Exp Biol ; 214(Pt 8): 1230-9, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21430198

RESUMO

This study investigated the influence of fiber size on the distribution of nuclei and fiber growth patterns in white muscle of black sea bass, Centropristis striata, ranging in body mass from 0.45 to 4840 g. Nuclei were counted in 1 µm optical sections using confocal microscopy of DAPIand Acridine-Orange-stained muscle fibers. Mean fiber diameter increased from 36±0.87 µm in the 0.45 g fish to 280±5.47 µm in the 1885 g fish. Growth beyond 2000 g triggered the recruitment of smaller fibers, thus significantly reducing mean fiber diameter. Nuclei in the smaller fibers were exclusively subsarcolemmal (SS), whereas in larger fibers nuclei were more numerous and included intermyofibrillar (IM) nuclei. There was a significant effect of body mass on nuclear domain size (F=118.71, d.f.=3, P<0.0001), which increased to a maximum in fish of medium size (282-1885 g) and then decreased in large fish (>2000 g). Although an increase in the number of nuclei during fiber growth can help preserve the myonuclear domain, the appearance of IM nuclei during hypertrophic growth seems to be aimed at maintaining short effective diffusion distances for nuclear substrates and products. If only SS nuclei were present throughout growth, the diffusion distance would increase in proportion to the radius of the fibers. These observations are consistent with the hypothesis that changes in nuclear distribution and fiber growth patterns are mechanisms for avoiding diffusion limitation during animal growth.


Assuntos
Bass/anatomia & histologia , Bass/crescimento & desenvolvimento , Núcleo Celular/metabolismo , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Rápida/fisiologia , Animais , Difusão
3.
Environ Pollut ; 285: 117653, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34380229

RESUMO

Microplastics are ubiquitous in marine and estuarine ecosystems, and thus there is increasing concern regarding exposure and potential effects in commercial species. To address this knowledge gap, we investigated the effects of microplastics on larval and early juvenile life stages of the Black Sea Bass (Centropristis striata), a North American fishery. Larvae (13-14 days post hatch, dph) were exposed to 1.0 × 104, 1.0 × 105, and 1.0 × 106 particles L-1 of low-density polyethylene (LDPE) microspheres (10-20 µm) directly in seawater and via trophic transfer from microzooplankton prey (tintinnid ciliates, Favella spp.). We also compared the ingestion of virgin and chemically-treated microspheres incubated with either phenanthrene, a polycyclic aromatic hydrocarbon, or 2,4-di-tert-butylphenol (2,4-DTBP), a plastic additive. Larval fish did not discriminate between virgin or chemically-treated microspheres. However, larvae did ingest higher numbers of microspheres through ingestion of microzooplankton prey than directly from the seawater. Early juveniles (50-60 dph) were directly exposed to the virgin and chemically-treated LDPE microspheres, as well as virgin LDPE microfibers for 96 h to determine physiological effects (i.e., oxygen consumption and immune response). There was a significant positive relationship between oxygen consumption and increasing microfiber concentration, as well as a significant negative relationship between immune response and increasing virgin microsphere concentration. This first assessment of microplastic pollution effects in the early life stages of a commercial finfish species demonstrates that trophic transfer from microzooplankton can be a significant route of microplastic exposure to larval stages of C. striata, and that multi-day exposure to some microplastics in early juveniles can result in physiological stress.


Assuntos
Bass , Poluentes Químicos da Água , Animais , Ingestão de Alimentos , Ecossistema , Pesqueiros , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-29175483

RESUMO

ß-guanidinopropionic acid (ß-GPA) has been used in mammalian models to reduce intracellular phosphocreatine (PCr) concentration, which in turn lowers the energetic state of cells. This leads to changes in signaling pathways that attempt to re-establish energetic homeostasis. Changes in those pathways elicit effects similar to those of exercise such as changes in body and muscle growth, metabolism, endurance and health. Generally, exercise effects are beneficial to fish health and aquaculture, but inducing exercise in fishes can be impractical. Therefore, this study evaluated the potential use of supplemental ß-GPA to induce exercise-like effects in a rapidly growing juvenile teleost, the red porgy (Pagrus pagrus). We demonstrate for the first time that ß-GPA can be transported into teleost muscle fibers and is phosphorylated, and that this perturbs the intracellular energetic state of the cells, although to a lesser degree than typically seen in mammals. ß-GPA did not affect whole animal growth, nor did it influence skeletal muscle fiber size or myonuclear recruitment. There was, however, an increase in mitochondrial volume within myofibers in treated fish. GC/MS metabolomic analysis revealed shifts in amino acid composition of the musculature, putatively reflecting increases in connective tissue and decreases in protein synthesis that are associated with ß-GPA treatment. These results suggest that ß-GPA modestly affects fish muscle in a manner similar to that observed in mammals, and that ß-GPA may have application to aquaculture by providing a more practical means of generating some of the beneficial effects of exercise in fishes.


Assuntos
Suplementos Nutricionais , Guanidinas/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Propionatos/farmacologia , Dourada/crescimento & desenvolvimento , Animais
5.
J Morphol ; 273(11): 1246-56, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22806937

RESUMO

Skeletal muscle cells (fibers) contract by shortening their parallel subunits, the myofibrils. Here we show a novel pattern of myofibril orientation in white muscle fibers of large black sea bass, Centropristis striata. Up to 48% of the white fibers in fish >1168 g had peripheral myofibrils undergoing an ∼90(o) shift in orientation. The resultant ring band wrapped the middle of the muscle fibers and was easily detected with polarized light microscopy. Transmission electron microscopy showed that the reoriented myofibrils shared the cytoplasm with the central longitudinal myofibrils. A microtubule network seen throughout the fibers surrounded nuclei but was mostly parallel to the long-axis of the myofibrils. In the ring band portion of the fibers the microtubule cytoskeleton also shifted orientation. Sarcolemmal staining with anti-synapsin was the same in fibers with or without ring bands, suggesting that fibers with ring bands have normal innervation and contractile function. The ring bands appear to be related to body-mass or age, not fiber size, and also vary along the body, being more frequent at the midpoint of the anteroposterior axis. Similar structures have been reported in different taxa and appear to be associated with hypercontraction of fibers not attached to a rigid structure (bone) or with fibers with unusually weak links between the sarcolemma and cytoskeleton, as in muscular dystrophy. Fish muscle fibers are attached to myosepta, which are flexible and may allow for fibers to hypercontract and thus form ring bands. The consequences of such a ring band pattern might be to restrict the further expansion of the sarcolemma and protect it from further mechanical stress.


Assuntos
Bass/anatomia & histologia , Microtúbulos/ultraestrutura , Fibras Musculares de Contração Rápida/ultraestrutura , Animais , Núcleo Celular/ultraestrutura , Músculo Esquelético/inervação , Miofibrilas/ultraestrutura , Sarcolema/ultraestrutura
6.
J Comp Physiol B ; 180(7): 967-77, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20461388

RESUMO

White muscle (WM) fibers in many fishes often increase in size from <50 µm in juveniles to >250 µm in adults. This leads to increases in intracellular diffusion distances that may impact the scaling with body mass of muscle metabolism. We have previously found similar negative scaling of aerobic capacity (mitochondrial volume density, V(mt)) and the rate of an aerobic process (post-contractile phosphocreatine recovery) in fish WM. In the present study, we examined the scaling with body mass of oxygen consumption rates of isolated mitochondria (VO(2mt)) from WM in three species from different families that vary in morphology and behavior: an active, pelagic species (bluefish, Pomatomus saltatrix), a relatively inactive demersal species (black sea bass, Centropristis striata), and a sedentary, benthic species (southern flounder, Paralichthys lethostigma). In contrast to our prior studies, the measurement of respiration in isolated mitochondria is not influenced by the diffusion of oxygen or metabolites. V(mt) was measured in WM and in high-density isolates used for VO(2mt) measurements. WM V(mt) was significantly higher in the bluefish than in the other two species and VO(2mt) was independent of body mass when expressed per milligram protein or per milliliter mitochondria. The size-independence of VO(2mt) indicates that differences in WM aerobic function result from variation in V(mt) and not to changes in VO(2mt). This is consistent with our prior work that indicated that while diffusion constraints influence mitochondrial distribution, the negative scaling of aerobic processes like post-contractile PCr recovery can largely be attributed to the body size dependence of V(mt).


Assuntos
Bass/metabolismo , Peso Corporal , Linguado/metabolismo , Mitocôndrias Musculares/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/ultraestrutura , Percas/metabolismo , Animais , Bass/crescimento & desenvolvimento , Linguado/crescimento & desenvolvimento , Microscopia Eletrônica de Transmissão , Mitocôndrias Musculares/ultraestrutura , Tamanho Mitocondrial , Fosforilação Oxidativa , Consumo de Oxigênio , Percas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA