Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Bot ; 109(11): 1741-1756, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36371717

RESUMO

PREMISE: Anthropogenic nitrogen (N) addition alters the abiotic and biotic environment, potentially leading to changes in patterns of natural selection (i.e., trait-fitness relationships) and the opportunity for selection (i.e., variance in relative fitness). Because N addition favors species with light acquisition strategies (e.g., tall species), we predicted that N would strengthen selection favoring those same traits. We also predicted that N could alter the opportunity for selection via its effects on mean fitness and/or competitive asymmetries. METHODS: We quantified the strength of selection and the opportunity for selection in replicated populations of the annual grass Setaria faberi (giant foxtail) growing in a long-term N addition experiment. We also correlated these population-level parameters with community-level metrics to identify the proximate causes of N-mediated evolutionary effects. RESULTS: N addition increased aboveground productivity, light asymmetry, and reduced species diversity. Contrary to expectations, N addition did not strengthen selection for trait values associated with higher light acquisition such as greater height and specific leaf area (SLA); rather, it strengthened selection favoring lower SLA. Light asymmetry and species diversity were associated with selection for height and SLA, suggesting a role for these factors in driving N-mediated selection. The opportunity for selection was not influenced by N addition but was negatively associated with species diversity. CONCLUSIONS: Our results indicate that anthropogenic N enrichment can affect evolutionary processes, but that evolutionary changes in plant traits within populations are unlikely to parallel the shifts in plant traits observed at the community level.


Assuntos
Nitrogênio , Folhas de Planta , Folhas de Planta/fisiologia , Evolução Biológica , Poaceae , Plantas
2.
Evolution ; 77(9): 2039-2055, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393951

RESUMO

Plants interact extensively with their neighbors, but the evolutionary consequences of variation in neighbor identity are not well understood. Seedling traits are likely to experience selection that depends on the identity of neighbors because they influence competitive outcomes. To explore this, we evaluated selection on seed mass and emergence time in two California grasses, the native perennial Stipa pulchra, and the non-native annual Bromus diandrus, in the field with six other native and non-native neighbor grasses in single- and mixed-species treatments. We also quantified characteristics of each neighbor treatment to further investigate factors influencing their effects on fitness and phenotypic selection. Selection favored larger seeds in both focal species and this was largely independent of neighbor identity. Selection generally favored earlier emergence in both focal species, but neighbor identity influenced the strength and direction of selection on emergence time in S. pulchra, but not B. diandrus. Greater light interception, higher soil moisture, and greater productivity of neighbors were associated with more intense selection for earlier emergence and larger seeds. Our findings suggest that changes in plant community composition can alter patterns of selection in seedling traits, and that these effects can be associated with measurable characteristics of the community.


Assuntos
Poaceae , Plântula , Poaceae/genética , Plântula/genética , Plantas , Sementes , Fenótipo , California
3.
Evol Lett ; 5(3): 265-276, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34136274

RESUMO

The timing of seedling emergence is strongly linked with fitness because it determines the biotic and abiotic environment experienced by plants in this vulnerable life stage. Experiments and observations consistently find that earlier-emerging plants have a competitive advantage over those emerging later. However, substantial genetic and phenotypic variation in emergence timing is harbored within and among plant populations, making it important to characterize the selective agents-including biotic interactions-that contribute to this variation. In seasonal herbaceous communities, we hypothesized that consumption of early-emerging individuals by vertebrates could weaken the strength of directional selection for earlier emergence in competitive environments. To investigate this, we carried out phenotypic selection analyses on emergence timing in two California grass species, the native Stipa pulchra and non-native Bromus diandrus, growing in intraspecific competitive neighborhoods with and without vertebrate herbivore exclusion. Vertebrate herbivores consistently weakened directional selection for earlier emergence. Our results demonstrate that vertebrate herbivores play an underappreciated selective role on phenology in plant populations, with implications for contemporary evolution, such as the potential of species to adapt to global environmental changes.

4.
Evol Appl ; 14(3): 658-673, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767742

RESUMO

Adaptation to current and future climates can be constrained by trade-offs between fitness-related traits. Early seedling emergence often enhances plant fitness in seasonal environments, but if earlier emergence in response to seasonal cues is genetically correlated with lower potential to spread emergence among years (i.e., bet-hedging), then this functional trade-off could constrain adaptive evolution. Consequently, selection favoring both earlier within-year emergence and greater spread of emergence among years-as is expected in more arid environments-may constrain adaptive responses to trait value combinations at which a performance gain in either function (i.e., evolving earlier within- or greater among-year emergence) generates a performance loss in the other. All such trait value combinations that cannot be improved for both functions simultaneously are described as Pareto optimal and together constitute the Pareto front. To investigate how this potential emergence timing trade-off might constrain adaptation to increasing aridity, we sourced seeds of two grasses, Stipa pulchra and Bromus diandrus, from multiple maternal lines within populations across an aridity gradient in California and examined their performance in a greenhouse experiment. We monitored emergence and assayed ungerminated seeds for viability to determine seed persistence, a metric of potential among-year emergence spread. In both species, maternal lines with larger fractions of persistent seeds emerged later, indicating a trade-off between within-year emergence speed and potential among-year emergence spread. In both species, populations on the Pareto front for both earlier emergence and larger seed persistence fraction occupied significantly more arid sites than populations off the Pareto front, consistent with the hypothesis that more arid sites impose the strongest selection for earlier within-year emergence and greater among-year emergence spread. Our results provide an example of how evaluating genetically based correlations within populations and applying Pareto optimality among populations can be used to detect evolutionary constraints and adaptation across environmental gradients.

5.
Ecol Evol ; 6(24): 8942-8953, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28035282

RESUMO

Ecological trade-offs are fundamental to theory in community ecology; critical for understanding species coexistence in diverse plant communities, as well as the evolution of diverse life-history strategies. Invasions by exotic species can provide insights into the importance of trade-offs in community assembly, because the ecological strategies of invading species often differ from those present in the native species pool. Exotic annual species have invaded many Mediterranean-climate areas around the globe, and often germinate and emerge earlier in the growing season than native species. Early-season growth can enable exotic annual species to preempt space and resources, competitively suppressing later-emerging native species; however, early-emerging individuals may also be more apparent to herbivores. This suggests a potential trade-off between seasonal phenology and susceptibility to herbivory. To evaluate this hypothesis, we monitored the emergence and growth of 12 focal species (six each native and exotic) in monoculture and polyculture, while experimentally excluding generalist herbivores both early and later in the growing season. Consistent with past studies, the exotic species emerged earlier than native species. Regardless of species origin, earlier-emerging species achieved greater biomass by the end of the experiment, but were more negatively impacted by herbivory, particularly in the early part of the growing season. This greater impact of early-season herbivory on early-active species led to a reduction in the competitive advantage of exotic species growing in polyculture, and improved the performance of later-emerging natives. Such a trade-off between early growth and susceptibility to herbivores could be an important force in community assembly in seasonal herbaceous-dominated ecosystems. These results also show how herbivore exclusion favors early-active exotic species in this system, with important implications for management in many areas invaded by early-active exotic species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA