Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 218(Pt 21): 3478-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26538177

RESUMO

Many aquatic insects utilise air bubbles on the surface of their bodies to supply O2 while they dive. The bubbles can simply store O2, as in the case of an 'air store', or they can act as a physical 'gas gill', extracting O2 from the water. Backswimmers of the genus Anisops augment their air store with O2 from haemoglobin cells located in the abdomen. The O2 release from the haemoglobin helps stabilise bubble volume, enabling backswimmers to remain near neutrally buoyant for a period of the dive. It is generally assumed that the backswimmer air store does not act as a gas gill and that gas exchange with the water is negligible. This study combines measurements of dive characteristics under different exotic gases (N2, He, SF6, CO) with mathematical modelling, to show that the air store of the backswimmer Anisops deanei does exchange gases with the water. Our results indicate that approximately 20% of O2 consumed during a dive is obtained directly from the water. Oxygen from the water complements that released from the haemoglobin, extending the period of near-neutral buoyancy and increasing dive duration.


Assuntos
Hemoglobinas/metabolismo , Heterópteros/fisiologia , Oxigênio/metabolismo , Animais , Mergulho , Heterópteros/metabolismo , Água/química
2.
J R Soc Interface ; 15(143)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899156

RESUMO

Eilenodontines are one of the oldest radiation of herbivorous lepidosaurs (snakes, lizards and tuatara) characterized by batteries of wide teeth with thick enamel that bear mammal-like wear facets. Unlike most reptiles, eilenodontines have limited tooth replacement, making dental longevity particularly important to them. We use both X-ray and neutron computed tomography to examine a fossil tooth from the eilenodontine Eilenodon (Late Jurassic, USA). Of the two approaches, neutron tomography was more successful and facilitated measurements of enamel thickness and distribution. We find the enamel thickness to be regionally variable, thin near the cusp tip (0.10 mm) but thicker around the base (0.15-0.30 mm) and notably greater than that of other rhynchocephalians such as the extant Sphenodon (0.08-0.14 mm). The thick enamel in Eilenodon would permit greater loading, extend tooth lifespan and facilitate the establishment of wear facets that have sharp edges for orally processing plant material such as horsetails (Equisetum). The shape of the enamel dentine junction indicates that tooth development in Eilenodon and Sphenodon involved similar folding of the epithelium but different ameloblast activity.


Assuntos
Esmalte Dentário/diagnóstico por imagem , Dinossauros , Fósseis , Herbivoria , Difração de Nêutrons , Tomografia Computadorizada por Raios X , Animais , Esmalte Dentário/fisiologia
3.
Open Biol ; 6(6)2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27278646

RESUMO

Scale sensilla are small tactile mechanosensory organs located on the head scales of many squamate reptiles (lizards and snakes). In sea snakes and sea kraits (Elapidae: Hydrophiinae), these scale organs are presumptive scale sensilla that purportedly function as both tactile mechanoreceptors and potentially as hydrodynamic receptors capable of sensing the displacement of water. We combined scanning electron microscopy, silicone casting of the skin and quadrate sampling with a phylogenetic analysis to assess morphological variation in sensilla on the postocular head scale(s) across four terrestrial, 13 fully aquatic and two semi-aquatic species of elapids. Substantial variation exists in the overall coverage of sensilla (0.8-6.5%) among the species sampled and is broadly overlapping in aquatic and terrestrial lineages. However, two observations suggest a divergent, possibly hydrodynamic sensory role of sensilla in sea snake and sea krait species. First, scale sensilla are more protruding (dome-shaped) in aquatic species than in their terrestrial counterparts. Second, exceptionally high overall coverage of sensilla is found only in the fully aquatic sea snakes, and this attribute appears to have evolved multiple times within this group. Our quantification of coverage as a proxy for relative 'sensitivity' represents the first analysis of the evolution of sensilla in the transition from terrestrial to marine habitats. However, evidence from physiological and behavioural studies is needed to confirm the functional role of scale sensilla in sea snakes and sea kraits.


Assuntos
Elapidae/fisiologia , Sensilas/fisiologia , Animais , Evolução Biológica , Ecossistema , Elapidae/classificação , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA