Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(2): 267-279, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36543958

RESUMO

CD8+ T cells are critical for elimination of cancer cells. Factors within the tumor microenvironment (TME) can drive these cells to a hypofunctional state known as exhaustion. The most terminally exhausted T (tTex) cells are resistant to checkpoint blockade immunotherapy and might instead limit immunotherapeutic efficacy. Here we show that intratumoral CD8+ tTex cells possess transcriptional features of CD4+Foxp3+ regulatory T cells and are similarly capable of directly suppressing T cell proliferation ex vivo. tTex cell suppression requires CD39, which generates immunosuppressive adenosine. Restricted deletion of CD39 in endogenous CD8+ T cells resulted in slowed tumor progression, improved immunotherapy responsiveness and enhanced infiltration of transferred tumor-specific T cells. CD39 is induced on tTex cells by tumor hypoxia, thus mitigation of hypoxia limits tTex suppression. Together, these data suggest tTex cells are an important regulatory population in cancer and strategies to limit their generation, reprogram their immunosuppressive state or remove them from the TME might potentiate immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Antígenos CD , Hipóxia , Neoplasias/terapia , Linfócitos T Reguladores , Microambiente Tumoral
2.
Immunity ; 56(9): 2021-2035.e8, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37516105

RESUMO

Environmental nutrient availability influences T cell metabolism, impacting T cell function and shaping immune outcomes. Here, we identified ketone bodies (KBs)-including ß-hydroxybutyrate (ßOHB) and acetoacetate (AcAc)-as essential fuels supporting CD8+ T cell metabolism and effector function. ßOHB directly increased CD8+ T effector (Teff) cell cytokine production and cytolytic activity, and KB oxidation (ketolysis) was required for Teff cell responses to bacterial infection and tumor challenge. CD8+ Teff cells preferentially used KBs over glucose to fuel the tricarboxylic acid (TCA) cycle in vitro and in vivo. KBs directly boosted the respiratory capacity and TCA cycle-dependent metabolic pathways that fuel CD8+ T cell function. Mechanistically, ßOHB was a major substrate for acetyl-CoA production in CD8+ T cells and regulated effector responses through effects on histone acetylation. Together, our results identify cell-intrinsic ketolysis as a metabolic and epigenetic driver of optimal CD8+ T cell effector responses.


Assuntos
Linfócitos T CD8-Positivos , Histonas , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Acetilação , Histonas/metabolismo , Corpos Cetônicos , Animais , Camundongos
3.
Mol Cell ; 82(16): 2918-2921, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35985300

RESUMO

Zhang et al. (2022) show that TCR signaling promotes the phosphorylation and activation of glycogen phosphorylase B (PYGB) in CD8+ memory T (Tmem) cells. PYGB-dependent glycogen mobilization provides a carbon source to support glycolysis and early Tmem cell recall responses.


Assuntos
Glicogênio , Células T de Memória , Glicogênio/metabolismo , Glicólise , Transdução de Sinais
4.
Nature ; 591(7851): 652-658, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33588426

RESUMO

Limiting metabolic competition in the tumour microenvironment may increase the effectiveness of immunotherapy. Owing to its crucial role in the glucose metabolism of activated T cells, CD28 signalling has been proposed as a metabolic biosensor of T cells1. By contrast, the engagement of CTLA-4 has been shown to downregulate T cell glycolysis1. Here we investigate the effect of CTLA-4 blockade on the metabolic fitness of intra-tumour T cells in relation to the glycolytic capacity of tumour cells. We found that CTLA-4 blockade promotes metabolic fitness and the infiltration of immune cells, especially in glycolysis-low tumours. Accordingly, treatment with anti-CTLA-4 antibodies improved the therapeutic outcomes of mice bearing glycolysis-defective tumours. Notably, tumour-specific CD8+ T cell responses correlated with phenotypic and functional destabilization of tumour-infiltrating regulatory T (Treg) cells towards IFNγ- and TNF-producing cells in glycolysis-defective tumours. By mimicking the highly and poorly glycolytic tumour microenvironments in vitro, we show that the effect of CTLA-4 blockade on the destabilization of Treg cells is dependent on Treg cell glycolysis and CD28 signalling. These findings indicate that decreasing tumour competition for glucose may facilitate the therapeutic activity of CTLA-4 blockade, thus supporting its combination with inhibitors of tumour glycolysis. Moreover, these results reveal a mechanism by which anti-CTLA-4 treatment interferes with Treg cell function in the presence of glucose.


Assuntos
Antígeno CTLA-4/antagonistas & inibidores , Glicólise , Neoplasias/imunologia , Neoplasias/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Melanoma/genética , Melanoma/imunologia , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
5.
Nature ; 591(7851): 645-651, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589820

RESUMO

Regulatory T (Treg) cells, although vital for immune homeostasis, also represent a major barrier to anti-cancer immunity, as the tumour microenvironment (TME) promotes the recruitment, differentiation and activity of these cells1,2. Tumour cells show deregulated metabolism, leading to a metabolite-depleted, hypoxic and acidic TME3, which places infiltrating effector T cells in competition with the tumour for metabolites and impairs their function4-6. At the same time, Treg cells maintain a strong suppression of effector T cells within the TME7,8. As previous studies suggested that Treg cells possess a distinct metabolic profile from effector T cells9-11, we hypothesized that the altered metabolic landscape of the TME and increased activity of intratumoral Treg cells are linked. Here we show that Treg cells display broad heterogeneity in their metabolism of glucose within normal and transformed tissues, and can engage an alternative metabolic pathway to maintain suppressive function and proliferation. Glucose uptake correlates with poorer suppressive function and long-term instability, and high-glucose conditions impair the function and stability of Treg cells in vitro. Treg cells instead upregulate pathways involved in the metabolism of the glycolytic by-product lactic acid. Treg cells withstand high-lactate conditions, and treatment with lactate prevents the destabilizing effects of high-glucose conditions, generating intermediates necessary for proliferation. Deletion of MCT1-a lactate transporter-in Treg cells reveals that lactate uptake is dispensable for the function of peripheral Treg cells but required intratumorally, resulting in slowed tumour growth and an increased response to immunotherapy. Thus, Treg cells are metabolically flexible: they can use 'alternative' metabolites in the TME to maintain their suppressive identity. Further, our results suggest that tumours avoid destruction by not only depriving effector T cells of nutrients, but also metabolically supporting regulatory populations.


Assuntos
Ácido Láctico/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Glucose/metabolismo , Humanos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Fatores Supressores Imunológicos/imunologia , Fatores Supressores Imunológicos/metabolismo , Linfócitos T Reguladores/imunologia
6.
J Exp Med ; 220(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37552475

RESUMO

While checkpoint blockade immunotherapies have widespread success, they rely on a responsive immune infiltrate; as such, treatments enhancing immune infiltration and preventing immunosuppression are of critical need. We previously generated αPD-1 resistant variants of the murine HNSCC model MEER. While entirely αPD-1 resistant, these tumors regress after single dose of oncolytic vaccinia virus (VV). We then generated a VV-resistant MEER line to dissect the immunologic features of sensitive and resistant tumors. While treatment of both tumor types induced immune infiltration and IFNγ, we found a defining feature of resistance was elevation of immunosuppressive cytokines like TGFß, which blunted IFNγ signaling, especially in regulatory T cells. We engineered VV to express a genetically encoded TGFßRII inhibitor. Inhibitor-expressing VV produced regressions in resistant tumor models and showed impressive synergy with checkpoint blockade. Importantly, tumor-specific, viral delivery of TGFß inhibition had no toxicities associated with systemic TGFß/TGFßR inhibition. Our data suggest that aside from stimulating immune infiltration, oncolytic viruses are attractive means to deliver agents to limit immunosuppression in cancer.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Camundongos , Linhagem Celular Tumoral , Imunossupressores , Fator de Crescimento Transformador beta/antagonistas & inibidores , Microambiente Tumoral , Vaccinia virus/genética
7.
J Immunother Cancer ; 11(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36914208

RESUMO

BACKGROUND: Cellular immunotherapies for cancer represent a means by which a patient's immune system can be augmented with high numbers of tumor-specific T cells. Chimeric antigen receptor (CAR) therapy involves genetic engineering to 'redirect' peripheral T cells to tumor targets, showing remarkable potency in blood cancers. However, due to several resistance mechanisms, CAR-T cell therapies remain ineffective in solid tumors. We and others have shown the tumor microenvironment harbors a distinct metabolic landscape that produces a barrier to immune cell function. Further, altered differentiation of T cells within tumors induces defects in mitochondrial biogenesis, resulting in severe cell-intrinsic metabolic deficiencies. While we and others have shown murine T cell receptor (TCR)-transgenic cells can be improved through enhanced mitochondrial biogenesis, we sought to determine whether human CAR-T cells could be enabled through a metabolic reprogramming approach. MATERIALS AND METHODS: Anti-EGFR CAR-T cells were infused in NSG mice which bore A549 tumors. The tumor infiltrating lymphocytes were analyzed for exhaustion and metabolic deficiencies. Lentiviruses carrying PPAR-gamma coactivator 1α (PGC-1α), PGC-1αS571A and NT-PGC-1α constructs were used to co-transduce T cells with anti-EGFR CAR lentiviruses. We performed metabolic analysis via flow cytometry and Seahorse analysis in vitro as well as RNA sequencing. Finally, we treated therapeutically A549-carrying NSG mice with either PGC-1α or NT-PGC-1α anti-EGFR CAR-T cells. We also analyzed the differences in the tumor-infiltrating CAR-T cells when PGC-1α is co-expressed. RESULTS: Here, in this study, we show that an inhibition resistant, engineered version of PGC-1α, can metabolically reprogram human CAR-T cells. Transcriptomic profiling of PGC-1α-transduced CAR-T cells showed this approach effectively induced mitochondrial biogenesis, but also upregulated programs associated with effector functions. Treatment of immunodeficient animals bearing human solid tumors with these cells resulted in substantially improved in vivo efficacy. In contrast, a truncated version of PGC-1α, NT-PGC-1α, did not improve the in vivo outcomes. CONCLUSIONS: Our data further support a role for metabolic reprogramming in immunomodulatory treatments and highlight the utility of genes like PGC-1α as attractive candidates to include in cargo along with chimeric receptors or TCRs for cell therapy of solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T , Linfócitos T , Microambiente Tumoral
8.
J Clin Invest ; 132(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35040434

RESUMO

As cancers progress, they produce a local environment that acts to redirect, paralyze, exhaust, or otherwise evade immune detection and destruction. The tumor microenvironment (TME) has long been characterized as a metabolic desert, depleted of essential nutrients such as glucose, oxygen, and amino acids, that starves infiltrating immune cells and renders them dysfunctional. While not incorrect, this perspective is only half the picture. The TME is not a metabolic vacuum, only consuming essential nutrients and never producing by-products. Rather, the by-products of depleted nutrients, "toxic" metabolites in the TME such as lactic acid, kynurenine, ROS, and adenosine, play an important role in shaping immune cell function and cannot be overlooked in cancer immunotherapy. Moreover, while the metabolic landscape is distinct, it is not unique, as these toxic metabolites are encountered in non-tumor tissues, where they evolutionarily shape immune cells and their response. In this Review, we discuss how depletion of essential nutrients and production of toxic metabolites shape the immune response within the TME and how toxic metabolites can be targeted to improve current cancer immunotherapies.


Assuntos
Neoplasias/imunologia , Microambiente Tumoral/imunologia , Adenosina/imunologia , Adenosina/metabolismo , Animais , Humanos , Imunoterapia , Cinurenina/imunologia , Cinurenina/metabolismo , Ácido Láctico/imunologia , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo
9.
Cell Metab ; 34(9): 1298-1311.e6, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35981545

RESUMO

How environmental nutrient availability impacts T cell metabolism and function remains poorly understood. Here, we report that the presence of physiologic carbon sources (PCSs) in cell culture medium broadly impacts glucose utilization by CD8+ T cells, independent of transcriptional changes in metabolic reprogramming. The presence of PCSs reduced glucose contribution to the TCA cycle and increased effector function of CD8+ T cells, with lactate directly fueling the TCA cycle. In fact, CD8+ T cells responding to Listeria infection preferentially consumed lactate over glucose as a TCA cycle substrate in vitro, with lactate enhancing T cell bioenergetic and biosynthetic capacity. Inhibiting lactate-dependent metabolism in CD8+ T cells by silencing lactate dehydrogenase A (Ldha) impaired both T cell metabolic homeostasis and proliferative expansion in vivo. Together, our data indicate that carbon source availability shapes T cell glucose metabolism and identifies lactate as a bioenergetic and biosynthetic fuel for CD8+ effector T cells.


Assuntos
Linfócitos T CD8-Positivos , Carbono , Linfócitos T CD8-Positivos/metabolismo , Carbono/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Nutrientes
10.
J Exp Med ; 215(4): 1091-1100, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29511066

RESUMO

Despite remarkable responses to cancer immunotherapy in a subset of patients, many patients remain resistant to these therapies. The tumor microenvironment can impose metabolic restrictions on T cell function, creating a resistance mechanism to immunotherapy. We have previously shown tumor-infiltrating T cells succumb to progressive loss of metabolic sufficiency, characterized by repression of mitochondrial activity that cannot be rescued by PD-1 blockade. 4-1BB, a costimulatory molecule highly expressed on exhausted T cells, has been shown to influence metabolic function. We hypothesized that 4-1BB signaling might provide metabolic support to tumor-infiltrating T cells. 4-1BB costimulation of CD8+ T cells results in enhanced mitochondrial capacity (suggestive of fusion) and engages PGC1α-mediated pathways via activation of p38-MAPK. 4-1BB treatment of mice improves metabolic sufficiency in endogenous and adoptive therapeutic CD8+ T cells. 4-1BB stimulation combined with PD-1 blockade results in robust antitumor immunity. Sequenced studies revealed the metabolic support afforded by 4-1BB agonism need not be continuous and that a short course of anti-4-1BB pretreatment was sufficient to provide a synergistic response. Our studies highlight metabolic reprogramming as the dominant effect of 4-1BB therapy and suggest that combinatorial strategies using 4-1BB agonism may help overcome the immunosuppressive metabolic landscape of the tumor microenvironment.


Assuntos
Imunoterapia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Mitocôndrias/metabolismo , Biogênese de Organelas , Linfócitos T/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Anticorpos/farmacologia , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA