Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
PLoS Comput Biol ; 20(2): e1011870, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335225

RESUMO

Chloroplasts are photosynthetic organelles in algal and plant cells that contain their own genome. Chloroplast genomes are commonly used in evolutionary studies and taxonomic identification and are increasingly becoming a target for crop improvement studies. As DNA sequencing becomes more affordable, researchers are collecting vast swathes of high-quality whole-genome sequence data from laboratory and field settings alike. Whole tissue read libraries sequenced with the primary goal of understanding the nuclear genome will inadvertently contain many reads derived from the chloroplast genome. These whole-genome, whole-tissue read libraries can additionally be used to assemble chloroplast genomes with little to no extra cost. While several tools exist that make use of short-read second generation and third-generation long-read sequencing data for chloroplast genome assembly, these tools may have complex installation steps, inadequate error reporting, poor expandability, and/or lack scalability. Here, we present CLAW (Chloroplast Long-read Assembly Workflow), an easy to install, customise, and use Snakemake tool to assemble chloroplast genomes from chloroplast long-reads found in whole-genome read libraries (https://github.com/aaronphillips7493/CLAW). Using 19 publicly available reference chloroplast genome assemblies and long-read libraries from algal, monocot and eudicot species, we show that CLAW can rapidly produce chloroplast genome assemblies with high similarity to the reference assemblies. CLAW was designed such that users have complete control over parameterisation, allowing individuals to optimise CLAW to their specific use cases. We expect that CLAW will provide researchers (with varying levels of bioinformatics expertise) with an additional resource useful for contributing to the growing number of publicly available chloroplast genome assemblies.


Assuntos
Genoma de Cloroplastos , Humanos , Genoma de Cloroplastos/genética , Fluxo de Trabalho , Análise de Sequência de DNA , Biologia Computacional , Cloroplastos/genética , Sequenciamento de Nucleotídeos em Larga Escala
2.
New Phytol ; 238(2): 904-915, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683442

RESUMO

Using microscopy to investigate stomatal behaviour is common in plant physiology research. Manual inspection and measurement of stomatal pore features is low throughput, relies upon expert knowledge to record stomatal features accurately, requires significant researcher time and investment, and can represent a significant bottleneck to research pipelines. To alleviate this, we introduce StomaAI (SAI): a reliable, user-friendly and adaptable tool for stomatal pore and density measurements via the application of deep computer vision, which has been initially calibrated and deployed for the model plant Arabidopsis (dicot) and the crop plant barley (monocot grass). SAI is capable of producing measurements consistent with human experts and successfully reproduced conclusions of published datasets. SAI boosts the number of images that can be evaluated in a fraction of the time, so can obtain a more accurate representation of stomatal traits than is routine through manual measurement. An online demonstration of SAI is hosted at https://sai.aiml.team, and the full local application is publicly available for free on GitHub through https://github.com/xdynames/sai-app.


Assuntos
Arabidopsis , Humanos , Fenótipo , Computadores , Estômatos de Plantas/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-36795096

RESUMO

Six strains, KI11_D11T, KI4_B1, KI11_C11T, KI16_H9T, KI4_A6T and KI3_B9T, were isolated from insects and flowers on Kangaroo Island, South Australia. On the basis of 16S rRNA gene phylogeny, strains KI11_D11T, KI4_B1, KI11_C11T, KI16_H9T, KI4_A6T were found to be closely related to Fructilactobacillus ixorae Ru20-1T. Due to the lack of a whole genome sequence for this species, whole genome sequencing of Fructilactobacillus ixorae Ru20-1T was undertaken. KI3_B9T was found to be closely related to Fructobacillus tropaeoli F214-1T. Utilizing core gene phylogenetics and whole genome analyses, such as determination of AAI, ANI and dDDH, we propose that these six isolates represent five novel species with the names Fructilactobacillus cliffordii (KI11_D11T= LMG 32130T = NBRC 114988T), Fructilactobacillus hinvesii (KI11_C11T = LMG 32129T = NBRC 114987T), Fructilactobacillus myrtifloralis (KI16_H9T= LMG 32131T = NBRC 114989T) Fructilactobacillus carniphilus (KI4_A6T = LMG 32127T = NBRC 114985T) and Fructobacillus americanaquae (KI3_B9T = LMG 32124T = NBRC 114983T). Chemotaxonomic analyses detected no fructophilic characters for these strains of member of the genus Fructilactobacillus. KI3_B9T was found to be obligately fructophilic, similarly to its phylogenetic neighbours in the genus Fructobacillus. This study represents the first isolation, to our knowledge, of novel species in the family Lactobacillaceae from the Australian wild.


Assuntos
Lactobacillales , Animais , Lactobacillales/genética , Filogenia , RNA Ribossômico 16S/genética , Austrália do Sul , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Ácidos Graxos/química , Austrália , Técnicas de Tipagem Bacteriana , Lactobacillus , Insetos , Flores/microbiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-36094463

RESUMO

Four strains, SG5_A10T, SGEP1_A5T, SG4_D2T, and SG4_A1T, were isolated from the honey or homogenate of Australian stingless bee species Tetragonula carbonaria and Austroplebeia australis. Based on 16S rRNA gene phylogeny, core gene phylogenetics, whole genome analyses such as determination of amino acid identity (AAI), cAAI of conserved genes, average nucleotide identity (ANI), and digital DNA-DNA hybridization (dDDH), chemotaxonomic analyses, and the novel isolation sources and unique geography, we propose three new species and one genus with the names Apilactobacillus apisilvae sp. nov. (SG5_A10T = LMG 32133T = NBRC 114991T), Bombilactobacillus thymidiniphilus sp. nov. (SG4_A1T = LMG 32125T = NBRC 114984T), Bombilactobacillus folatiphilus sp. nov. (SG4_D2T = LMG 32126T = NBRC 115004T) and Nicolia spurrieriana sp. nov. (SGEP1_A5T = LMG 32134T = NBRC 114992T). Three out of the four strains were found to be fructophilic, where SG5_A10T and SGEP1_A5T belong to obligately fructophilic lactic acid bacteria, and SG4_D2T representing a new type denoted here as kinetically fructophilic. This study represents the first published lactic acid bacterial species associated with the unique niche of Australian stingless bees.


Assuntos
Lactobacillales , Animais , Austrália , Técnicas de Tipagem Bacteriana , Composição de Bases , Abelhas , DNA Bacteriano/genética , Ácidos Graxos/química , Ácido Láctico , Lactobacillales/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Brief Bioinform ; 20(2): 384-389, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29106479

RESUMO

EMBL Australia Bioinformatics Resource (EMBL-ABR) is a developing national research infrastructure, providing bioinformatics resources and support to life science and biomedical researchers in Australia. EMBL-ABR comprises 10 geographically distributed national nodes with one coordinating hub, with current funding provided through Bioplatforms Australia and the University of Melbourne for its initial 2-year development phase. The EMBL-ABR mission is to: (1) increase Australia's capacity in bioinformatics and data sciences; (2) contribute to the development of training in bioinformatics skills; (3) showcase Australian data sets at an international level and (4) enable engagement in international programs. The activities of EMBL-ABR are focussed in six key areas, aligning with comparable international initiatives such as ELIXIR, CyVerse and NIH Commons. These key areas-Tools, Data, Standards, Platforms, Compute and Training-are described in this article.


Assuntos
Disciplinas das Ciências Biológicas , Pesquisa Biomédica , Biologia Computacional/educação , Biologia Computacional/métodos , Curadoria de Dados/métodos , Austrália , Humanos
6.
Plant J ; 99(4): 673-685, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31009129

RESUMO

Nuclear male-sterile mutants with non-conditional, recessive and strictly monogenic inheritance are useful for both hybrid and conventional breeding systems, and have long been a research focus for many crops. In allohexaploid wheat, however, genic redundancy results in rarity of such mutants, with the ethyl methanesulfonate-induced mutant ms5 among the few reported to date. Here, we identify TaMs5 as a glycosylphosphatidylinositol-anchored lipid transfer protein required for normal pollen exine development, and by transgenic complementation demonstrate that TaMs5-A restores fertility to ms5. We show ms5 locates to a centromere-proximal interval and has a sterility inheritance pattern modulated by TaMs5-D but not TaMs5-B. We describe two allelic forms of TaMs5-D, one of which is non-functional and confers mono-factorial inheritance of sterility. The second form is functional but shows incomplete dominance. Consistent with reduced functionality, transcript abundance in developing anthers was found to be lower for TaMs5-D than TaMs5-A. At the 3B homoeolocus, we found only non-functional alleles among 178 diverse hexaploid and tetraploid wheats that include landraces and Triticum dicoccoides. Apparent ubiquity of non-functional TaMs5-B alleles suggests loss-of-function arose early in wheat evolution and, therefore, at most knockout of two homoeoloci is required for sterility. This work provides genetic information, resources and tools required for successful implementation of ms5 sterility in breeding systems for bread and durum wheats.


Assuntos
Proteínas de Plantas/metabolismo , Triticum/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Infertilidade das Plantas/genética , Infertilidade das Plantas/fisiologia , Proteínas de Plantas/genética , Pólen/metabolismo , Pólen/fisiologia , Triticum/genética , Triticum/fisiologia
7.
Mol Biol Evol ; 36(12): 2922-2924, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411700

RESUMO

Comparing newly obtained and previously known nucleotide and amino-acid sequences underpins modern biological research. BLAST is a well-established tool for such comparisons but is challenging to use on new data sets. We combined a user-centric design philosophy with sustainable software development approaches to create Sequenceserver, a tool for running BLAST and visually inspecting BLAST results for biological interpretation. Sequenceserver uses simple algorithms to prevent potential analysis errors and provides flexible text-based and visual outputs to support researcher productivity. Our software can be rapidly installed for use by individuals or on shared servers.


Assuntos
Biologia Computacional/métodos , Técnicas Genéticas , Software
8.
BMC Biotechnol ; 19(1): 71, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684940

RESUMO

BACKGROUND: The CRISPR-Cas9 system is a powerful and versatile tool for crop genome editing. However, achieving highly efficient and specific editing in polyploid species can be a challenge. The efficiency and specificity of the CRISPR-Cas9 system depends critically on the gRNA used. Here, we assessed the activities and specificities of seven gRNAs targeting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in hexaploid wheat protoplasts. EPSPS is the biological target of the widely used herbicide glyphosate. RESULTS: The seven gRNAs differed substantially in their on-target activities, with mean indel frequencies ranging from 0% to approximately 20%. There was no obvious correlation between experimentally determined and in silico predicted on-target gRNA activity. The presence of a single mismatch within the seed region of the guide sequence greatly reduced but did not abolish gRNA activity, whereas the presence of an additional mismatch, or the absence of a PAM, all but abolished gRNA activity. Large insertions (≥20 bp) of DNA vector-derived sequence were detected at frequencies up to 8.5% of total indels. One of the gRNAs exhibited several properties that make it potentially suitable for the development of non-transgenic glyphosate resistant wheat. CONCLUSIONS: We have established a rapid and reliable method for gRNA validation in hexaploid wheat protoplasts. The method can be used to identify gRNAs that have favourable properties. Our approach is particularly suited to polyploid species, but should be applicable to any plant species amenable to protoplast transformation.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma de Planta/genética , RNA Guia de Cinetoplastídeos/genética , Triticum/genética , Protoplastos/metabolismo
9.
Plant Biotechnol J ; 17(10): 1905-1913, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30839150

RESUMO

The development and adoption of hybrid seed technology have led to dramatic increases in agricultural productivity. However, it has been a challenge to develop a commercially viable platform for the production of hybrid wheat (Triticum aestivum) seed due to wheat's strong inbreeding habit. Recently, a novel platform for commercial hybrid seed production was described. This hybridization platform utilizes nuclear male sterility to force outcrossing and has been applied to maize and rice. With the recent molecular identification of the wheat male fertility gene Ms1, it is now possible to extend the use of this novel hybridization platform to wheat. In this report, we used the CRISPR/Cas9 system to generate heritable, targeted mutations in Ms1. The introduction of biallelic frameshift mutations into Ms1 resulted in complete male sterility in wheat cultivars Fielder and Gladius, and several of the selected male-sterile lines were potentially non-transgenic. Our study demonstrates the utility of the CRISPR/Cas9 system for the rapid generation of male sterility in commercial wheat cultivars. This represents an important step towards capturing heterosis to improve wheat yields, through the production and use of hybrid seed on an industrial scale.


Assuntos
Sistemas CRISPR-Cas , Infertilidade das Plantas , Sementes , Triticum/genética , Mutação da Fase de Leitura , Técnicas de Inativação de Genes , Genes de Plantas , Poliploidia
10.
Brief Bioinform ; 18(3): 537-544, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27084333

RESUMO

The Bioinformatics Training Platform (BTP) has been developed to provide access to the computational infrastructure required to deliver sophisticated hands-on bioinformatics training courses. The BTP is a cloud-based solution that is in active use for delivering next-generation sequencing training to Australian researchers at geographically dispersed locations. The BTP was built to provide an easy, accessible, consistent and cost-effective approach to delivering workshops at host universities and organizations with a high demand for bioinformatics training but lacking the dedicated bioinformatics training suites required. To support broad uptake of the BTP, the platform has been made compatible with multiple cloud infrastructures. The BTP is an open-source and open-access resource. To date, 20 training workshops have been delivered to over 700 trainees at over 10 venues across Australia using the BTP.


Assuntos
Biologia Computacional , Austrália , Sequenciamento de Nucleotídeos em Larga Escala , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA