RESUMO
Melanoma is a progressive disease that claims many lives each year due to lack of therapeutics effective for the long-term treatment of patients. Currently, the best treatment option is early detection followed by surgical removal. Better melanoma therapies that are effectively delivered to tumors with minimal toxicity for patients are urgently needed. Nanotechnologies provide one approach to encapsulate therapeutic agents leading to improvements in circulation time, enhanced tumor uptake, avoidance of the reticulo-endothelial system, and minimization of toxicity. Liposomes in particular are a promising nanotechnology that can be used for more effective delivery of therapeutic agents to treat melanoma. Liposomes delivering chemotherapies, siRNA, asODNs, DNA, and radioactive particles are just some of the promising new nanotechnology based therapies under development for the treatment of melanoma that are discussed in this review.
Assuntos
Antineoplásicos/administração & dosagem , Lipossomos , Melanoma/terapia , Neoplasias Cutâneas/terapia , Antineoplásicos/uso terapêutico , Composição de Medicamentos , Terapia Genética , Humanos , Melanoma/tratamento farmacológico , Nanoestruturas , Ácidos Nucleicos/administração & dosagem , Ácidos Nucleicos/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológicoRESUMO
Cysteine string protein (Csp) is a J-domain-containing protein whose overexpression blocks the exit of cystic fibrosis transmembrane conductance regulator (CFTR) from the endoplasmic reticulum (ER). Another method of blocking ER exit, the overexpression of Sar1-GTP, however, yielded twice as much immature CFTR compared with Csp overexpression. This finding suggested that Csp not only inhibits CFTR ER exit but also facilitates the degradation of immature CFTR. This was confirmed by treatment with a proteasome inhibitor, which returned the level of immature CFTR to that found in cells expressing Sar1-GTP only. CspH43Q, which does not interact with Hsc70/Hsp70 efficiently, did not promote CFTR degradation, suggesting that the pro-degradative effect of Csp requires Hsc70/Hsp70 binding/activation. In agreement with this, Csp overexpression increased the amount of Hsc70/Hsp70 co-immunoprecipitated with CFTR, whereas overexpression of CspH43Q did not. The Hsc70/Hsp70 binding partner C terminus of Hsp70-interacting protein (CHIP) can target CFTR for proteasome-mediated degradation. Csp overexpression also increased the amount of CHIP co-immunoprecipitated with CFTR. In addition, CHIP interacted directly with Csp, which was confirmed by in vitro binding experiments. Csp overexpression also increased CFTR ubiquitylation and reduced the half-life of immature CFTR. These findings indicate that Csp not only regulates the exit of CFTR from the ER, but that this action is accompanied by Hsc70/Hsp70 and CHIP-mediated CFTR degradation.