Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Ecol ; 41(4): 373-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25833216

RESUMO

Social parasites exploit other societies by invading and stealing resources. Some enter protected nests using offensive chemical weaponry made from alkaloid-based venom. We characterized the venoms of three Megalomyrmex thief ant species (M. mondabora, M. mondaboroides, and M. silvestrii) that parasitize the fungus-growing ants, and developed an ethogram to describe host ant reactions to raiding M. mondaboroides and M. silvestrii parasites. We compared piperidine, pyrrolidine, and pyrolizidine venom alkaloid structures with synthetic samples from previous studies, and describe the novel stereochemistry of trans 2-hexyl-5-[8-oxononyl]-pyrrolidine (3) from M. mondabora. We showed that workers of Cyphomyrmex costatus, the host of M. mondaboroides and M. silvestrii, react to a sting by Megalomyrmex parasites mainly with submissive behavior, playing dead or retreating. Host submission also followed brief antennal contact. The behavior of C. costatus ants observed in this study was similar to that of Cyphomyrmex cornutus, host of M. mondabora, suggesting that the alkaloidal venoms with pyrrolidines from M. mondabora, piperidines from M. mondaboroides, and pyrolizidines from M. silvestrii may function similarly as appeasement and repellent allomones against host ants, despite their different chemical structure. With the use of these chemical weapons, the Megalomyrmex thief ants are met with little host resistance and easily exploit host colony resources.


Assuntos
Alcaloides/metabolismo , Venenos de Formiga/metabolismo , Formigas/fisiologia , Formigas/parasitologia , Alcaloides/análise , Animais , Venenos de Formiga/análise , Formigas/química , Especificidade da Espécie
2.
J Nat Prod ; 70(2): 160-8, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17243727

RESUMO

Analysis of the extracts of the ant Myrmicaria melanogaster from Brunei in the Indonesian archipelago by GC-MS and GC-IR revealed the presence of five new alkaloids, identified as (9Z)-3-propylindolizidine (1), cis- and trans-2-butyl-5-propylpyrrolidine (2 and 3, respectively), (10E)-3-butyllehmizidine (7), and (5Z,8Z,9Z)-3-butyl-5-propyl-8-hydroxyindolizidine (10a), whose structures were established by comparison with synthetic samples. In addition the monoterpene hydrocarbons beta-pinene, myrcene, and limonene were detected along with all four isomers of 3-butyl-5-methylindolizidine (4a-d), cis- and trans-2-butyl-5-(4-pentenyl)pyrrolidine (5a and 5b), trans-2-butyl-5-pentylpyrrolidine (6), (5Z,9Z)-3-butyl-5-propylindolizidine (8), and (5Z,9E)-3-butyl-5-propylindolizidine (9), alkaloids well known from ants and frogs, whose structures were established on the basis of published spectra or comparison with authentic samples. This study utilized vapor-phase infrared analysis for the assignment of stereochemistry using Bohlmann bands for the bicyclic alkaloids and, in the case of 10a, the detection of an intramolecular hydrogen bond. A biogenetic relationship between the mono- and bicyclic ring systems is proposed.


Assuntos
Alcaloides/química , Alcaloides/isolamento & purificação , Venenos de Formiga/química , Formigas/química , Indolizinas/química , Indolizinas/isolamento & purificação , Venenos de Anfíbios/química , Animais , Brunei , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA