RESUMO
A single nucleotide polymorphism substitution from glutamine (Gln, Q) to arginine (Arg, R) at codon 460 of the purinergic P2X7 receptor (P2X7R) has repeatedly been associated with mood disorders. The P2X7R-Gln460Arg variant per se is not compromised in its function. However, heterologous expression of P2X7R-Gln460Arg together with wild-type P2X7R has recently been demonstrated to impair receptor function. Here we show that this also applies to humanized mice coexpressing both human P2X7R variants. Primary hippocampal cells derived from heterozygous mice showed an attenuated calcium uptake upon agonist stimulation. While humanized mice were unaffected in their behavioral repertoire under basal housing conditions, mice that harbor both P2X7R variants showed alterations in their sleep quality resembling signs of a prodromal disease stage. Also healthy heterozygous human subjects showed mild changes in sleep parameters. These results indicate that heterozygosity for the wild-type P2X7R and its mood disorder-associated variant P2X7R-Gln460Arg represents a genetic risk factor, which is potentially able to convey susceptibility to mood disorders.SIGNIFICANCE STATEMENT Depression and bipolar disorder are the most common mood disorders. The P2X7 receptor (P2X7R) regulates many cellular functions. Its polymorphic variant Gln460Arg has repeatedly been associated with mood disorders. Genetically engineered mice, with human P2X7R, revealed that heterozygous mice (i.e., they coexpress the disease-associated Gln460Arg variant together with its normal version) have impaired receptor function and showed sleep disturbances. Human participants with the heterozygote genotype also had subtle alterations in their sleep profile. Our findings suggest that altered P2X7R function in heterozygote individuals disturbs sleep and might increase the risk for developing mood disorders.
Assuntos
Variação Genética/genética , Heterozigoto , Transtornos do Humor/genética , Receptores Purinérgicos P2X7/genética , Sono/genética , Animais , Arginina/genética , Células Cultivadas , Glutamina/genética , Hipocampo/fisiologia , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
BACKGROUND: The introduction of central venous catheters has advanced medical care, particularly in hemato-oncology. However these can be associated with an increased thrombotic risk. Previous studies have compared the rate of thrombotic events between peripherally- inserted (PICCs) and long term skin tunneled catheters (LTSTCs) noting fewer complications associated with the latter, though this has rarely translated into clinical practice. The objectives of our study was to compare the cumulative incidence of thrombotic events between peripherally-inserted and long term skin tunneled venous catheters. PATIENTS/METHODS: We performed a retrospective, single center cohort analysis of patients with hematological malignancies who had either a PICC or LTSTC line inserted between January 2010 through January 2013. Cumulative incidences of thrombotic events were compared between the two groups, and post-thrombotic complications were also examined. RESULTS: 346 patients had a PICC inserted with cumulative incidence of symptomatic thrombosis of 5.8%, while 237 patients had a LTSTC inserted with a cumulative incidence of 1.7% (p = 0.003). Post-thrombotic complication rates, particularly infection, were higher in the PICC group compared to the LTSTC group (p = 0.597). CONCLUSIONS: Our study showed that the incidence of thrombotic events in hemato-oncology patients was significantly lower in those who had a LTSTC compared to PICC line. As the use of central venous lines increases in hemato-oncology patient care, a randomized trial comparing PICCs and LTSTCs is necessary to address which venous access is most appropriate in this cohort of patients, with minimal risk of morbidity and mortality.
RESUMO
Cancer evolution lays the groundwork for predictive oncology. Testing evolutionary metrics requires quantitative measurements in controlled clinical trials. We mapped genomic intratumor heterogeneity in locally advanced prostate cancer using 642 samples from 114 individuals enrolled in clinical trials with a 12-year median follow-up. We concomitantly assessed morphological heterogeneity using deep learning in 1,923 histological sections from 250 individuals. Genetic and morphological (Gleason) diversity were independent predictors of recurrence (hazard ratio (HR) = 3.12 and 95% confidence interval (95% CI) = 1.34-7.3; HR = 2.24 and 95% CI = 1.28-3.92). Combined, they identified a group with half the median time to recurrence. Spatial segregation of clones was also an independent marker of recurrence (HR = 2.3 and 95% CI = 1.11-4.8). We identified copy number changes associated with Gleason grade and found that chromosome 6p loss correlated with reduced immune infiltration. Matched profiling of relapse, decades after diagnosis, confirmed that genomic instability is a driving force in prostate cancer progression. This study shows that combining genomics with artificial intelligence-aided histopathology leads to the identification of clinical biomarkers of evolution.
Assuntos
Gradação de Tumores , Recidiva Local de Neoplasia , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Recidiva Local de Neoplasia/genética , Variações do Número de Cópias de DNA , Progressão da Doença , Instabilidade Genômica , Idoso , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Aprendizado ProfundoRESUMO
BACKGROUND: Neurogenesis control and the prevention of premature differentiation in the vertebrate embryo are crucial processes, allowing the formation of late-born cell types and ensuring the correct shape and cytoarchitecture of the brain. Members of the Hairy/Enhancer of Split (Hairy/E(spl)) family of bHLH-Orange transcription factors, such as zebrafish Her3, 5, 9 and 11, are implicated in the local inhibition of neurogenesis to maintain progenitor pools within the early neural plate. To better understand how these factors exert their inhibitory function, we aimed to isolate some of their functional interactors. RESULTS: We used a yeast two-hybrid screen with Her5 as bait and recovered a novel zebrafish Hairy/E(spl) factor--Her8a. Using phylogenetic and synteny analyses, we demonstrate that her8a evolved from an ancient duplicate of Hes6 that was recently lost in the mammalian lineage. We show that her8a is expressed across the mid- and anterior hindbrain from the start of segmentation. Through knockdown and misexpression experiments, we demonstrate that Her8a is a negative regulator of neurogenesis and plays an essential role in generating progenitor pools within rhombomeres 2 and 4--a role resembling that of Her3. Her8a co-purifies with Her3, suggesting that Her8a-Her3 heterodimers may be relevant in this domain of the neural plate, where both proteins are co-expressed. Finally, we demonstrate that her8a expression is independent of Notch signaling at the early neural plate stage but that SoxB factors play a role in its expression, linking patterning information to neurogenesis control. Overall, the regulation and function of Her8a differ strikingly from those of its closest relative in other vertebrates--the Hes6-like proteins. CONCLUSIONS: Our results characterize the phylogeny, expression and functional interactions involving a new Her factor, Her8a, and highlight the complex interplay of E(spl) proteins that generates the neurogenesis pattern of the zebrafish early neural plate.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Proteínas Repressoras/metabolismo , Rombencéfalo/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Morfogênese/fisiologia , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/classificação , Proteínas do Tecido Nervoso/genética , Filogenia , Ligação Proteica , Multimerização Proteica , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Rombencéfalo/citologia , Transdução de Sinais/fisiologia , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/classificação , Proteínas de Peixe-Zebra/genéticaRESUMO
The 41-amino acid peptide corticotropin releasing factor (CRF) is a major modulator of the mammalian stress response. Upon stressful stimuli, it binds to the corticotropin releasing factor receptor 1 (CRF(1)R), a typical member of the class-B G-protein-coupled receptors (GPCRs) and a prime target in the treatment of mood disorders. To chemically probe the molecular interaction of CRF with the transmembrane domain of its cognate receptor, we developed a high-throughput conjugation approach that mimics the natural activation mechanism of class-B GPCRs. An acetylene-tagged peptide library was synthesized and conjugated to an azide-modified high-affinity carrier peptide derived from the CRF C-terminus using copper-catalyzed dipolar cycloaddition. The resulting conjugates reconstituted potent agonists and were tested in situ for activation of the CRF(1) receptor in a cell-based assay. By use of this approach we (i) defined the minimal sequence motif that is required for full receptor activation, (ii) identified the critical functional groups and structure-activity relationships, (iii) developed an optimized, highly modified peptide probe with high potency (EC(50) = 4 nM) that is specific for the activation domain of the receptor, and (iv) probed the behavioral role of CRF receptors in living mice. The membrane recruitment by a high-affinity carrier enhanced the potency of the tethered peptides by >4 orders of magnitude and thus allowed the testing of very weak initial fragments that otherwise would have been inactive on their own. As no chromatography purification of the test peptides was necessary, a substantial increase in screening throughput was achieved. Importantly, the peptide conjugates can be used to probe the endogenous receptor in its native environment in vivo.
Assuntos
Biomimética/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Receptores de Hormônio Liberador da Corticotropina/agonistas , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Membrana Celular/metabolismo , Química Click , Hormônio Liberador da Corticotropina/química , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Ligantes , Camundongos , Estrutura Terciária de Proteína , Receptores de Hormônio Liberador da Corticotropina/química , Relação Estrutura-Atividade , Urocortinas/química , Urocortinas/metabolismo , Urocortinas/farmacologiaRESUMO
A case of aortitis in a patient undergoing adjuvant cisplatin and topotecan chemotherapy for cervical cancer following presentation with pyrexia of unknown origin and raised inflammatory markers is presented. Although many chemotherapy agents are known to cause small vessel vasculitis and there are several reported cases of large vessel vasculitis following gemcitabine chemotherapy, there is only one previously described case of aortitis following cisplatin administration. This case is presented with corresponding CT and 18F-FDG PET-CT imaging with discussion of the literature regarding vasculitis and chemotherapy.
RESUMO
All subdivisions of the adult zebrafish brain maintain niches of constitutive neurogenesis, sustained by quiescent and multipotent progenitor populations. In the telencephalon, the latter potential neural stem cells take the shape of radial glia aligned along the ventricle and are controlled by Notch signalling. With the aim of identifying new markers of this cell type and of comparing the effectors of embryonic and adult neurogenesis, we focused on the family of hairy/enhancer of split [E(spl)] genes. We report the expression of seven hairy/E(spl) (her) genes and the new helt gene in three neurogenic areas of the adult zebrafish brain (telencephalon, hypothalamus, and midbrain) in relation to radial glia, proliferation, and neurogenesis. We show that the expression of most her genes in the adult brain characterizes quiescent radial glia, whereas only few are expressed in progenitor domains engaged in active proliferation or neurogenesis. The low proliferation status of most her-positive progenitors contrasts with the embryonic nervous system, in which her genes are expressed in actively dividing progenitors. Likewise, we demonstrate largely overlapping expression domains of a set of her genes in the adult brain, which is in striking contrast to their distinct embryonic expression profiles. Overall, our data provide a consolidated map of her expression, quiescent glia, proliferation, and neurogenesis in these various subdivisions of the adult brain and suggest distinct regulation and function of Her factors in the embryonic and adult contexts.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/metabolismo , Proteínas de Homeodomínio/biossíntese , Neurogênese/fisiologia , Proteínas de Peixe-Zebra/biossíntese , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/citologia , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Especificidade da Espécie , Telencéfalo/citologia , Telencéfalo/metabolismo , Fatores de Transcrição HES-1 , Peixe-Zebra , Proteínas de Peixe-Zebra/genéticaRESUMO
BACKGROUND: Addiction is a pathological dysregulation of the brain's reward systems, determined by several complex genetic pathways. The conditioned place preference test provides an evaluation of the effects of drugs in animal models, allowing the investigation of substances at a biologically relevant level with respect to reward. Our lab has previously reported the development of a reliable conditioned place preference paradigm for zebrafish. Here, this test was used to isolate a dominant N-ethyl-N-nitrosourea (ENU)-induced mutant, no addiction (nad(dne3256)), which fails to respond to amphetamine, and which we used as an entry point towards identifying the behaviorally relevant transcriptional response to amphetamine. RESULTS: Through the combination of microarray experiments comparing the adult brain transcriptome of mutant and wild-type siblings under normal conditions, as well as their response to amphetamine, we identified genes that correlate with the mutants' altered conditioned place preference behavior. In addition to pathways classically involved in reward, this gene set shows a striking enrichment in transcription factor-encoding genes classically involved in brain development, which later appear to be re-used within the adult brain. We selected a subset of them for validation by quantitative PCR and in situ hybridization, revealing that specific brain areas responding to the drug through these transcription factors include domains of ongoing adult neurogenesis. Finally, network construction revealed functional connections between several of these genes. CONCLUSIONS: Together, our results identify a new network of coordinated gene regulation that influences or accompanies amphetamine-triggered conditioned place preference behavior and that may underlie the susceptibility to addiction.