Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
Cell ; 153(7): 1579-88, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23791184

RESUMO

An ultimate goal of evolutionary biology is the prediction and experimental verification of adaptive trajectories on macroevolutionary timescales. This aim has rarely been achieved for complex biological systems, as models usually lack clear correlates of organismal fitness. Here, we simulate the fitness landscape connecting two carbon fixation systems: C3 photosynthesis, used by most plant species, and the C4 system, which is more efficient at ambient CO2 levels and elevated temperatures and which repeatedly evolved from C3. Despite extensive sign epistasis, C4 photosynthesis is evolutionarily accessible through individually adaptive steps from any intermediate state. Simulations show that biochemical subtraits evolve in modules; the order and constitution of modules confirm and extend previous hypotheses based on species comparisons. Plant-species-designated C3-C4 intermediates lie on predicted evolutionary trajectories, indicating that they indeed represent transitory states. Contrary to expectations, we find no slowdown of adaptation and no diminishing fitness gains along evolutionary trajectories.


Assuntos
Evolução Biológica , Fotossíntese , Plantas/genética , Adaptação Fisiológica , Ciclo do Carbono , Epistasia Genética , Evolução Molecular , Aptidão Genética , Mutação , Fenômenos Fisiológicos Vegetais , Plantas/classificação
2.
Plant Cell ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701340

RESUMO

Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase CO2 concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.

3.
Plant Cell ; 35(5): 1334-1359, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36691724

RESUMO

Gynandropsis gynandra (Cleomaceae) is a cosmopolitan leafy vegetable and medicinal plant, which has also been used as a model to study C4 photosynthesis due to its evolutionary proximity to C3 Arabidopsis (Arabidopsis thaliana). Here, we present the genome sequence of G. gynandra, anchored onto 17 main pseudomolecules with a total length of 740 Mb, an N50 of 42 Mb and 30,933 well-supported gene models. The G. gynandra genome and previously released genomes of C3 relatives in the Cleomaceae and Brassicaceae make an excellent model for studying the role of genome evolution in the transition from C3 to C4 photosynthesis. Our analyses revealed that G. gynandra and its C3 relative Tarenaya hassleriana shared a whole-genome duplication event (Gg-α), then an addition of a third genome (Th-α, +1×) took place in T. hassleriana but not in G. gynandra. Analysis of syntenic copy number of C4 photosynthesis-related gene families indicates that G. gynandra generally retained more duplicated copies of these genes than C3T. hassleriana, and also that the G. gynandra C4 genes might have been under positive selection pressure. Both whole-genome and single-gene duplication were found to contribute to the expansion of the aforementioned gene families in G. gynandra. Collectively, this study enhances our understanding of the polyploidy history, gene duplication and retention, as well as their impact on the evolution of C4 photosynthesis in Cleomaceae.


Assuntos
Arabidopsis , Brassicaceae , Magnoliopsida , Duplicação Gênica , Magnoliopsida/genética , Brassicaceae/genética , Arabidopsis/genética , Fotossíntese/genética , Evolução Molecular
4.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38267085

RESUMO

Cellular and physiological cycles are driven by endogenous pacemakers, the diurnal and circadian rhythms. Key functions such as cell cycle progression and cellular metabolism are under rhythmic regulation, thereby maintaining physiological homeostasis. The photoreceptors phytochrome and cryptochrome, in response to light cues, are central input pathways for physiological cycles in most photosynthetic organisms. However, among Archaeplastida, red algae are the only taxa that lack phytochromes. Current knowledge about oscillatory rhythms is primarily derived from model species such as Arabidopsis thaliana and Chlamydomonas reinhardtii in the Viridiplantae, whereas little is known about these processes in other clades of the Archaeplastida, such as the red algae (Rhodophyta). We used genome-wide expression profiling of the red seaweed Gracilariopsis chorda and identified 3,098 rhythmic genes. Here, we characterized possible cryptochrome-based regulation and photosynthetic/cytosolic carbon metabolism in this species. We found a large family of cryptochrome genes in G. chorda that display rhythmic expression over the diurnal cycle and may compensate for the lack of phytochromes in this species. The input pathway gates regulatory networks of carbon metabolism which results in a compact and efficient energy metabolism during daylight hours. The system in G. chorda is distinct from energy metabolism in most plants, which activates in the dark. The green lineage, in particular, land plants, balance water loss and CO2 capture in terrestrial environments. In contrast, red seaweeds maintain a reduced set of photoreceptors and a compact cytosolic carbon metabolism to thrive in the harsh abiotic conditions typical of intertidal zones.


Assuntos
Arabidopsis , Rodófitas , Alga Marinha , Alga Marinha/genética , Criptocromos/metabolismo , Rodófitas/genética , Ritmo Circadiano/genética , Arabidopsis/genética
5.
Plant Cell ; 34(10): 3860-3872, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35792867

RESUMO

Altering plant water use efficiency (WUE) is a promising approach for achieving sustainable crop production in changing climate scenarios. Here, we show that WUE can be tuned by alleles of a single gene discovered in elite maize (Zea mays) breeding material. Genetic dissection of a genomic region affecting WUE led to the identification of the gene ZmAbh4 as causative for the effect. CRISPR/Cas9-mediated ZmAbh4 inactivation increased WUE without growth reductions in well-watered conditions. ZmAbh4 encodes an enzyme that hydroxylates the phytohormone abscisic acid (ABA) and initiates its catabolism. Stomatal conductance is regulated by ABA and emerged as a major link between variation in WUE and discrimination against the heavy carbon isotope (Δ13C) during photosynthesis in the C4 crop maize. Changes in Δ13C persisted in kernel material, which offers an easy-to-screen proxy for WUE. Our results establish a direct physiological and genetic link between WUE and Δ13C through a single gene with potential applications in maize breeding.


Assuntos
Ácido Abscísico , Zea mays , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Alelos , Isótopos de Carbono , Fotossíntese/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Água/metabolismo , Zea mays/metabolismo
6.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36788455

RESUMO

Energy production and metabolism are intimately linked to ecological and environmental constraints across the tree of life. In plants, which depend on sunlight to produce energy, the link between primary metabolism and the environment is especially strong. By governing CO2 uptake for photosynthesis and transpiration, leaf pores, or stomata, couple energy metabolism to the environment and determine productivity and water-use efficiency (WUE). Although evolution is known to tune physiological traits to the local environment, we lack knowledge of the specific links between molecular and evolutionary mechanisms that shape this process in nature. Here, we investigate the evolution of stomatal conductance and WUE in an Arabidopsis population that colonized an island with a montane cloud scrubland ecosystem characterized by seasonal drought and fog-based precipitation. We find that stomatal conductance increases and WUE decreases in the colonizing population relative to its closest outgroup population from temperate North Africa. Genome-wide association mapping reveals a polygenic basis of trait variation, with a substantial contribution from a nonsynonymous single-nucleotide polymorphism in MAP KINASE 12 (MPK12 G53R), which explains 35% of the phenotypic variance in WUE in the island population. We reconstruct the spatially explicit evolutionary history of MPK12 53R on the island and find that this allele increased in frequency in the population due to positive selection as Arabidopsis expanded into the harsher regions of the island. Overall, these findings show how adaptation shaped quantitative eco-physiological traits in a new precipitation regime defined by low rainfall and high humidity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Ecossistema , Estudo de Associação Genômica Ampla , Proteínas de Arabidopsis/genética , Folhas de Planta , Fotossíntese/genética , Água/metabolismo , Genômica , Secas
7.
Plant Physiol ; 193(2): 1433-1455, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37453131

RESUMO

The identification of factors that regulate C/N utilization in plants can make a substantial contribution to optimization of plant health. Here, we explored the contribution of pyridox(am)ine 5'-phosphate oxidase3 (PDX3), which regulates vitamin B6 homeostasis, in Arabidopsis (Arabidopsis thaliana). Firstly, N fertilization regimes showed that ammonium application rescues the leaf morphological phenotype of pdx3 mutant lines but masks the metabolite perturbance resulting from impairment in utilizing soil nitrate as a source of N. Without fertilization, pdx3 lines suffered a C/N imbalance and accumulated nitrogenous compounds. Surprisingly, exploration of photorespiration as a source of endogenous N driving this metabolic imbalance, by incubation under high CO2, further exacerbated the pdx3 growth phenotype. Interestingly, the amino acid serine, critical for growth and N management, alleviated the growth phenotype of pdx3 plants under high CO2, likely due to the requirement of pyridoxal 5'-phosphate for the phosphorylated pathway of serine biosynthesis under this condition. Triggering of thermomorphogenesis by growth of plants at 28 °C (instead of 22 °C) did not appear to require PDX3 function, and we observed that the consequent drive toward C metabolism counters the C/N imbalance in pdx3. Further, pdx3 lines suffered a salicylic acid-induced defense response, probing of which unraveled that it is a protective strategy mediated by nonexpressor of pathogenesis related1 (NPR1) and improves fitness. Overall, the study demonstrates the importance of vitamin B6 homeostasis as managed by the salvage pathway enzyme PDX3 to growth in diverse environments with varying nutrient availability and insight into how plants reprogram their metabolism under such conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Carbono/metabolismo , Fosfatos/metabolismo , Dióxido de Carbono/metabolismo , Vitamina B 6 , Piridoxina/metabolismo , Fosfato de Piridoxal/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nitrogênio/metabolismo
8.
J Exp Bot ; 75(6): 1696-1713, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38158893

RESUMO

Photosynthesis plays a vital role in acclimating to and mitigating climate change, providing food and energy security for a population that is constantly growing, and achieving an economy with zero carbon emissions. A thorough comprehension of the dynamics of photosynthesis, including its molecular regulatory network and limitations, is essential for utilizing it as a tool to boost plant growth, enhance crop yields, and support the production of plant biomass for carbon storage. Photorespiration constrains photosynthetic efficiency and contributes significantly to carbon loss. Therefore, modulating or circumventing photorespiration presents opportunities to enhance photosynthetic efficiency. Over the past eight decades, substantial progress has been made in elucidating the molecular basis of photosynthesis, photorespiration, and the key regulatory mechanisms involved, beginning with the discovery of the canonical Calvin-Benson-Bassham cycle. Advanced chromatographic and mass spectrometric technologies have allowed a comprehensive analysis of the metabolite patterns associated with photosynthesis, contributing to a deeper understanding of its regulation. In this review, we summarize the results of metabolomics studies that shed light on the molecular intricacies of photosynthetic metabolism. We also discuss the methodological requirements essential for effective analysis of photosynthetic metabolism, highlighting the value of this technology in supporting strategies aimed at enhancing photosynthesis.


Assuntos
Metabolômica , Fotossíntese , Biomassa , Carbono , Mudança Climática
9.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33531363

RESUMO

Many enzymes involved in photosynthesis possess highly conserved cysteine residues that serve as redox switches in chloroplasts. These redox switches function to activate or deactivate enzymes during light-dark transitions and have the function of fine-tuning their activities according to the intensity of light. Accordingly, many studies on chloroplast redox regulation have been conducted under the hypothesis that "fine regulation of the activities of these enzymes is crucial for efficient photosynthesis." However, the impact of the regulatory system on plant metabolism is still unclear. To test this hypothesis, we here studied the impact of the ablation of a redox switch in chloroplast NADP-malate dehydrogenase (MDH). By genome editing, we generated a mutant plant whose MDH lacks one of its redox switches and is active even in dark conditions. Although NADPH consumption by MDH in the dark is expected to be harmful to plant growth, the mutant line did not show any phenotypic differences under standard long-day conditions. In contrast, the mutant line showed severe growth retardation under short-day or fluctuating light conditions. These results indicate that thiol-switch redox regulation of MDH activity is crucial for maintaining NADPH homeostasis in chloroplasts under these conditions.


Assuntos
Cloroplastos/genética , Malato Desidrogenase (NADP+)/genética , Fotossíntese/genética , Tiorredoxinas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cisteína/genética , Embriófitas/genética , Embriófitas/crescimento & desenvolvimento , Luz , Oxirredução
10.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001608

RESUMO

Plants depend on the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) for CO2 fixation. However, especially in C3 plants, photosynthetic yield is reduced by formation of 2-phosphoglycolate, a toxic oxygenation product of Rubisco, which needs to be recycled in a high-flux-demanding metabolic process called photorespiration. Canonical photorespiration dissipates energy and causes carbon and nitrogen losses. Reducing photorespiration through carbon-concentrating mechanisms, such as C4 photosynthesis, or bypassing photorespiration through metabolic engineering is expected to improve plant growth and yield. The ß-hydroxyaspartate cycle (BHAC) is a recently described microbial pathway that converts glyoxylate, a metabolite of plant photorespiration, into oxaloacetate in a highly efficient carbon-, nitrogen-, and energy-conserving manner. Here, we engineered a functional BHAC in plant peroxisomes to create a photorespiratory bypass that is independent of 3-phosphoglycerate regeneration or decarboxylation of photorespiratory precursors. While efficient oxaloacetate conversion in Arabidopsis thaliana still masks the full potential of the BHAC, nitrogen conservation and accumulation of signature C4 metabolites demonstrate the proof of principle, opening the door to engineering a photorespiration-dependent synthetic carbon-concentrating mechanism in C3 plants.

11.
Arch Orthop Trauma Surg ; 144(1): 551-558, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38001380

RESUMO

INTRODUCTION: The aim of this study was to investigate the radiological outcomes of proximal closing metacarpal extension osteotomies using patient-specific guides and instruments (PSI) in early-stage trapeziometacarpal osteoarthritis to gain further insight into the joint loading surface and the benefits of the procedure. METHODS: In a prospective observational study, nine patients were included between 11/2020 and 12/2021, undergoing a total of ten proximal metacarpal extension osteotomies for basal thumb osteoarthritis. Computer-assisted surgical planning was performed using computed tomography (CT) and three-dimensional (3D) segmentation, allowing the fabrication of 3D-printed PSIs for surgical treatment. Inclusion criteria were a 1-year follow-up by CT to assess postoperative correction of the positional shift of the first metacarpal (MC1) and the location of peak loads compared with the preoperative situation. RESULTS: Radiographic analysis of the peak loading zone revealed a mean displacement on the articular surface of the trapezius of 0.4 mm ± 1.4 mm to radial and 0.1 mm ± 1.2 mm to palmar, and on the articular surface of the MC1 of 0.4 mm ± 1.4 mm to radial and 0.1 mm ± 1.2 mm to dorsal. CONCLUSION: There were trends indicating that a flatter pressure distribution and a dorsal shift of the peak loading zone may contribute to an improvement in subjective pain and patient satisfaction associated with this surgical procedure. The non-significant radiological results and the minor dorsal-radial shifts in our small study group limit a firm conclusion. LEVEL OF EVIDENCE: III.


Assuntos
Ossos Metacarpais , Osteoartrite , Humanos , Ossos Metacarpais/diagnóstico por imagem , Ossos Metacarpais/cirurgia , Polegar/cirurgia , Osteoartrite/diagnóstico por imagem , Osteoartrite/cirurgia , Tomografia Computadorizada por Raios X , Osteotomia/métodos
12.
Plant J ; 111(3): 713-730, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644998

RESUMO

As sessile organisms, plants must adapt their physiology and developmental processes to cope with challenging environmental circumstances, such as the ongoing elevation in atmospheric carbon dioxide (CO2 ) levels. Nicotinamide adenine dinucleotide (NAD+ ) is a cornerstone of plant metabolism and plays an essential role in redox homeostasis. Given that plants impaired in NAD metabolism and transport often display growth defects, low seed production and disturbed stomatal development/movement, we hypothesized that subcellular NAD distribution could be a candidate for plants to exploit the effects of CO2 fertilization. We report that an efficient subcellular NAD+ distribution is required for the fecundity-promoting effects of elevated CO2 levels. Plants with reduced expression of either mitochondrial (NDT1 or NDT2) or peroxisomal (PXN) NAD+ transporter genes grown under elevated CO2 exhibited reduced total leaf area compared with the wild-type while PXN mutants also displayed reduced leaf number. NDT2 and PXN lines grown under elevated CO2 conditions displayed reduced rosette dry weight and lower photosynthetic rates coupled with reduced stomatal conductance. Interestingly, high CO2 doubled seed production and seed weight in the wild-type, whereas the mutants were less responsive to increases in CO2 levels during reproduction, producing far fewer seeds than the wild-type under both CO2 conditions. These data highlight the importance of mitochondrial and peroxisomal NAD+ uptake mediated by distinct NAD transporter proteins to modulate photosynthesis and seed production under high CO2 levels.


Assuntos
Dióxido de Carbono , NAD , Dióxido de Carbono/metabolismo , NAD/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Sementes/metabolismo
13.
Plant Cell Environ ; 46(4): 1037-1045, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36805595

RESUMO

A key to achieve the goals put forward in the UN's 2030 Agenda for Sustainable Development, it will need transformative change to our agrifood systems. We must mount to the global challenge to achieve food security in a sustainable manner in the context of climate change, population growth, urbanization, and depletion of natural resources. Rice is one of the major staple cereal crops that has contributed, is contributing, and will still contribute to the global food security. To date, rice yield has held pace with increasing demands, due to advances in both fundamental and biological studies, as well as genomic and molecular breeding practices. However, future rice production depends largely on the planting of resilient cultivars that can acclimate and adapt to changing environmental conditions. This Special Issue highlight with reviews and original research articles the exciting and growing field of rice-environment interactions that could benefit future rice breeding. We also outline open questions and propose future directions of 2050 rice research, calling for more attentions to develop environment-resilient rice especially hybrid rice, upland rice and perennial rice.


Assuntos
Oryza , Oryza/genética , Grão Comestível , Produtos Agrícolas , Adaptação Fisiológica , Genômica
14.
Plant Cell Environ ; 46(11): 3611-3627, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37431820

RESUMO

Research on C4 and C3-C4 photosynthesis has attracted significant attention because the understanding of the genetic underpinnings of these traits will support the introduction of its characteristics into commercially relevant crop species. We used a panel of 19 taxa of 18 Brassiceae species with different photosynthesis characteristics (C3 and C3-C4) with the following objectives: (i) create draft genome assemblies and annotations, (ii) quantify orthology levels using synteny maps between all pairs of taxa, (iii) ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠describe the phylogenetic relatedness across all the species, and (iv) track the evolution of C3-C4 intermediate photosynthesis in the Brassiceae tribe. Our results indicate that the draft de novo genome assemblies are of high quality and cover at least 90% of the gene space. Therewith we more than doubled the sampling depth of genomes of the Brassiceae tribe that comprises commercially important as well as biologically interesting species. The gene annotation generated high-quality gene models, and for most genes extensive upstream sequences are available for all taxa, yielding potential to explore variants in regulatory sequences. The genome-based phylogenetic tree of the Brassiceae contained two main clades and indicated that the C3-C4 intermediate photosynthesis has evolved five times independently. Furthermore, our study provides the first genomic support of the hypothesis that Diplotaxis muralis is a natural hybrid of D. tenuifolia and D. viminea. Altogether, the de novo genome assemblies and the annotations reported in this study are a valuable resource for research on the evolution of C3-C4 intermediate photosynthesis.


Assuntos
Brassicaceae , Fotossíntese , Filogenia , Fotossíntese/genética , Brassicaceae/genética , Genômica
15.
J Exp Bot ; 74(21): 6631-6649, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37392176

RESUMO

Carbon-concentrating mechanisms enhance the carboxylase efficiency of Rubisco by providing supra-atmospheric concentrations of CO2 in its surroundings. Beside the C4 photosynthesis pathway, carbon concentration can also be achieved by the photorespiratory glycine shuttle which requires fewer and less complex modifications. Plants displaying CO2 compensation points between 10 ppm and 40 ppm are often considered to utilize such a photorespiratory shuttle and are termed 'C3-C4 intermediates'. In the present study, we perform a physiological, biochemical, and anatomical survey of a large number of Brassicaceae species to better understand the C3-C4 intermediate phenotype, including its basic components and its plasticity. Our phylogenetic analysis suggested that C3-C4 metabolism evolved up to five times independently in the Brassicaceae. The efficiency of the pathway showed considerable variation. Centripetal accumulation of organelles in the bundle sheath was consistently observed in all C3-C4-classified taxa, indicating a crucial role for anatomical features in CO2-concentrating pathways. Leaf metabolite patterns were strongly influenced by the individual species, but accumulation of photorespiratory shuttle metabolites glycine and serine was generally observed. Analysis of phosphoenolpyruvate carboxylase activities suggested that C4-like shuttles have not evolved in the investigated Brassicaceae. Convergent evolution of the photorespiratory shuttle indicates that it represents a distinct photosynthesis type that is beneficial in some environments.


Assuntos
Brassicaceae , Carbono , Filogenia , Carbono/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Glicina/genética , Glicina/metabolismo , Folhas de Planta/metabolismo
16.
Int J Vitam Nutr Res ; 93(2): 122-131, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34074127

RESUMO

Carbon monoxide (CO) is endogenously produced upon degradation of heme by heme oxygenases (HOs) and is suggested to act as a gaseous signaling molecule. The expression of HO-1 is triggered by the Nrf2-Keap1 signaling pathway which responds to exogenous stress signals and dietary constituents such as flavonoids and glucosinolates or reactive metabolic intermediates like 4-hydroxynonenal. Endogenous CO affects energy metabolism, regulates the utilization of glucose and addresses CYP450 enzymes. Using the CO releasing molecule-401 (CORM-401), we studied the effect of endogenous CO on ATP synthesis, AMP-signaling and activation of the AMPK pathway in cell culture. Upon exposure of cells to CORM-401, the mitochondrial ATP production rate was significantly decreased (P=0.007) to about 50%, while glycolytic ATP synthesis was unchanged (P=0.489). Total ATP levels were less affected as determined by mass spectrometry. Instead, levels of ADP and AMP were elevated following CORM-401 exposure by about two- (P=0.022) and four-fold (P=0.012) compared to control, respectively. Increased concentrations of AMP activate AMPK which was demonstrated by a 10 to 15-fold increased phosphorylation of Thr172 of the α-subunit of AMPK (P=0.025). A downstream target of AMPK is the kinase ULK1 which triggers autophagic and mitophagic processes. Activation of ULK1 after CO exposure was proven by a 3 to 5-fold elevated phosphorylation of ULK1 at Ser555 (P=0.004). The present data suggest that production of endogenous CO leads to increasing amounts of AMP which mediates AMPK-dependent downstream effects and likely triggers autophagic processes. Since dietary constituents and their metabolites induce the expression of the CO producing enzyme HO-1, CO signaling may also be involved in the cellular response to nutritional factors.


Assuntos
Proteínas Quinases Ativadas por AMP , Monóxido de Carbono , Camundongos , Animais , Fosforilação , Monóxido de Carbono/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fibroblastos/metabolismo , Heme/metabolismo , Trifosfato de Adenosina/metabolismo
17.
J Hand Surg Am ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37952146

RESUMO

PURPOSE: This study aimed to evaluate the risk factors for distal phalanx fracture nonunion. METHODS: We retrospectively reviewed all adult patients treated for distal phalanx fractures at our institution between January 2015 and December 2019 with a minimum one-year follow-up period for potential risk factors. The absence of consolidation signs on follow-up radiographs at least 12 months after trauma was defined as nonunion. RESULTS: This study included 124 patients with 143 fractures available for follow-up. Nonunion was diagnosed in 19 patients, 18 of whom initially presented with an open fracture. On the day of the injury, 17 patients with open fractures presented to the hospital. In 16 nonunion cases, the traumatic mechanism was a crush injury. All nonunions occurred in tuft fractures, and none required revision surgery at the follow-up visit. CONCLUSIONS: Our findings suggest that tuft involvement in open fractures is the main risk factor for nonunion of distal phalangeal fractures. However, after a minimum of 1 year of follow-up, none of the tuft nonunions required revision surgery. TYPE OF STUDY/LEVEL OF EVIDENCE: Therapeutic IV.

18.
Clin Oral Investig ; 27(8): 4705-4713, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37349642

RESUMO

OBJECTIVES: To investigate whether in patients undergoing surgery for oral squamous cell carcinoma, stimulated Raman histology (SRH), in comparison with H&E-stained frozen sections, can provide accurate diagnoses regarding neoplastic tissue and sub-classification of non-neoplastic tissues. MATERIALS AND METHODS: SRH, a technology based on Raman scattering, was applied to generate digital histopathologic images of 80 tissue samples obtained from 8 oral squamous cell carcinoma (OSCC) patients. Conventional H&E-stained frozen sections were then obtained from all 80 samples. All images/sections (SRH and H&E) were analyzed for squamous cell carcinoma, normal mucosa, connective tissue, muscle tissue, adipose tissue, salivary gland tissue, lymphatic tissue, and inflammatory cells. Agreement between SRH and H&E was evaluated by calculating Cohen's kappa. Accuracy of SRH compared to H&E was quantified by calculating sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) as well as area under the receiver operating characteristic curve (AUC). RESULTS: Thirty-six of 80 samples were classified as OSCC by H&E-based diagnosis. Regarding the differentiation between neoplastic and non-neoplastic tissue, high agreement between H&E and SRH (kappa: 0.880) and high accuracy of SRH (sensitivity: 100%; specificity: 90.91%; PPV: 90.00%, NPV: 100%; AUC: 0.954) were demonstrated. For sub-classification of non-neoplastic tissues, SRH performance was dependent on the type of tissue, with high agreement and accuracy for normal mucosa, muscle tissue, and salivary glands. CONCLUSION: SRH provides high accuracy in discriminating neoplastic and non-neoplastic tissues. Regarding sub-classification of non-neoplastic tissues in OSCC patients, accuracy varies depending on the type of tissue examined. CLINICAL RELEVANCE: This study demonstrates the potential of SRH for intraoperative imaging of fresh, unprocessed tissue specimens from OSCC patients without the need for sectioning or staining.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Valor Preditivo dos Testes
19.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569585

RESUMO

In healthy tissues, cells are in mechanical homeostasis. During cancer progression, this equilibrium is disrupted. Cancer cells alter their mechanical phenotype to a softer and more fluid-like one than that of healthy cells. This is connected to cytoskeletal remodeling, changed adhesion properties, faster cell proliferation and increased cell motility. In this work, we investigated the mechanical properties of breast cancer cells representative of different breast cancer subtypes, using MCF-7, tamoxifen-resistant MCF-7, MCF10A and MDA-MB-231 cells. We derived viscoelastic properties from atomic force microscopy force spectroscopy measurements and showed that the mechanical properties of the cells are associated with cancer cell malignancy. MCF10A are the stiffest and least fluid-like cells, while tamoxifen-resistant MCF-7 cells are the softest ones. MCF-7 and MDA-MB-231 show an intermediate mechanical phenotype. Confocal fluorescence microscopy on cytoskeletal elements shows differences in actin network organization, as well as changes in focal adhesion localization. These findings provide further evidence of distinct changes in the mechanical properties of cancer cells compared to healthy cells and add to the present understanding of the complex alterations involved in tumorigenesis.


Assuntos
Neoplasias da Mama , Citoesqueleto , Humanos , Feminino , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Células MCF-7 , Actinas/metabolismo , Tamoxifeno/farmacologia , Tamoxifeno/metabolismo , Neoplasias da Mama/metabolismo , Microscopia de Força Atômica/métodos
20.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768962

RESUMO

Stress-associated changes in the mechanical properties at the single-cell level of Escherichia coli (E. coli) cultures in bioreactors are still poorly investigated. In our study, we compared peptide-producing and non-producing BL21(DE3) cells in a fed-batch cultivation with tightly controlled process parameters. The cell growth, peptide content, and cell lysis were analysed, and changes in the mechanical properties were investigated using atomic force microscopy. Recombinant-tagged somatostatin-28 was expressed as soluble up to 197 ± 11 mg g-1. The length of both cultivated strains increased throughout the cultivation by up to 17.6%, with nearly constant diameters. The peptide-producing cells were significantly softer than the non-producers throughout the cultivation, and respective Young's moduli decreased by up to 57% over time. A minimum Young's modulus of 1.6 MPa was observed after 23 h of the fed-batch. Furthermore, an analysis of the viscoelastic properties revealed that peptide-producing BL21(DE3) appeared more fluid-like and softer than the non-producing reference. For the first time, we provide evidence that the physical properties (i.e., the mechanical properties) on the single-cell level are significantly influenced by the metabolic burden imposed by the recombinant peptide expression and C-limitation in bioreactors.


Assuntos
Reatores Biológicos , Escherichia coli , Proteínas Recombinantes/metabolismo , Ciclo Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA