Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 225: 109254, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150544

RESUMO

Advanced age is the most established risk factor for developing age-related macular degeneration (AMD), one of the leading causes of visual impairment in the elderly, in Western and developed countries. Similarly, after middle age, there is an exponential increase in pathologic molecular and cellular events that can induce senescence, traditionally defined as an irreversible loss of the cells' ability to divide and most recently reported to also occur in select post-mitotic and terminally differentiated cells, such as neurons. Together these facts raise the question as to whether or not cellular senescence, may play a role in the development of AMD. A number of studies have reported the effect of ocular-relevant inducers of senescence using primarily in vitro models of poorly polarized, actively dividing retinal pigment epithelial (RPE) cell lines. However, in interpretating the data, the fidelity of these culture models to the RPE in vivo, must be considered. Fewer studies have explored the presence and/or impact of senescent cells in in vivo models that present with phenotypic features of AMD, leaving this an open field for further investigation. The goal of this review is to discuss current thoughts on the potential role of senescence in AMD development and progression, with consideration of the model systems used and their relevance to human disease.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Pessoa de Meia-Idade , Humanos , Idoso , Epitélio Pigmentado da Retina/metabolismo , Degeneração Macular/metabolismo , Senescência Celular
2.
Proc Natl Acad Sci U S A ; 111(46): 16280-5, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25378701

RESUMO

For reasons that remain insufficiently understood, the brain requires among the highest levels of metals in the body for normal function. The traditional paradigm for this organ and others is that fluxes of alkali and alkaline earth metals are required for signaling, but transition metals are maintained in static, tightly bound reservoirs for metabolism and protection against oxidative stress. Here we show that copper is an endogenous modulator of spontaneous activity, a property of functional neural circuitry. Using Copper Fluor-3 (CF3), a new fluorescent Cu(+) sensor for one- and two-photon imaging, we show that neurons and neural tissue maintain basal stores of loosely bound copper that can be attenuated by chelation, which define a labile copper pool. Targeted disruption of these labile copper stores by acute chelation or genetic knockdown of the CTR1 (copper transporter 1) copper channel alters the spatiotemporal properties of spontaneous activity in developing hippocampal and retinal circuits. The data identify an essential role for copper neuronal function and suggest broader contributions of this transition metal to cell signaling.


Assuntos
Cobre/fisiologia , Neurônios/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/fisiologia , Quelantes/farmacologia , Cobre/farmacologia , Transportador de Cobre 1 , Relação Dose-Resposta a Droga , Feminino , Corantes Fluorescentes/análise , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Molibdênio/farmacologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Retina/citologia , Retina/efeitos dos fármacos , Retina/crescimento & desenvolvimento , Estilbenos/farmacologia , Relação Estrutura-Atividade
3.
bioRxiv ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38979258

RESUMO

Senescence emerged as a significant mechanism of aging and age-related diseases, offering an attractive target for clinical interventions. Senescent cells release a senescence-associated secretory phenotype (SASP), including exosomes that may act as signal transducers between distal tissues, propagating secondary or bystander senescence and signaling throughout the body. However, the composition of exosome SASP remains underexplored, presenting an opportunity for novel unbiased discovery. Here, we present a detailed proteomic and lipidomic analysis of exosome SASP using mass spectrometry from human plasma from young and older individuals and from tissue culture of senescent primary human lung fibroblasts. We identified ~1,300 exosome proteins released by senescent fibroblasts induced by three different senescence inducers causing most exosome proteins to be differentially regulated with senescence. In parallel, a human plasma cohort from young and old individuals revealed over 1,350 exosome proteins and 171 plasma exosome proteins were regulated when comparing old vs young individuals. Of the age-regulated plasma exosome proteins, we observed 52 exosome SASP factors that were also regulated in exosomes from the senescent fibroblasts, including serine protease inhibitors (SERPINs), Prothrombin, Coagulation factor V, Plasminogen, and Reelin. In addition, 247 lipids were identified with high confidence in all exosome samples. Following the senescence inducers, a majority of the identified phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin species increased significantly indicating cellular membrane changes. The most notable categories of significantly changed proteins were related to extracellular matrix remodeling and inflammation, both potentially detrimental pathways that can damage surrounding tissues and even induce secondary or bystander senescence. Our findings reveal mechanistic insights and potential senescence biomarkers, enabling a better approach to surveilling the senescence burden in the aging population and offering promising therapeutic targets for interventions.

4.
eNeuro ; 7(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32238415

RESUMO

In the central nervous system, melastatin transient receptor potential (TRPM) channels function as receptors for the neurosteroid pregnenolone sulfate (PregS). The expression and function of TRPM3 has been explored in adult retina, although its role during development is unknown. We found, during the second postnatal week in mice, TRPM3 immunofluorescence labeled distinct subsets of inner retinal neurons, including a subset of retinal ganglion cells (RGCs), similar to what has been reported in the adult. Labeling for a TRPM3 promoter-driven reporter confirmed expression of the TRPM3 gene in RGCs and revealed additional expression in nearly all Müller glial cells. Using two-photon calcium imaging, we show that PregS and the synthetic TRPM3 agonist CIM0216 (CIM) induced prolonged calcium transients in RGCs, which were mostly absent in TRPM3 knock-out (KO) mice. These prolonged calcium transients were not associated with strong membrane depolarizations but induced c-Fos expression. To elucidate the impact of PregS-activation of TRPM3 on retinal circuits we took two sets of physiological measurements. First, PregS induced a robust increase in the frequency but not amplitude of spontaneous postsynaptic currents (PSCs). This increase was absent in the TRPM3 KO mice. Second, PregS induced a small increase in cell participation and duration of retinal waves, but this modulation persisted in TRPM3 KO mice, indicating PregS was acting on wave generating circuits independent of TRPM3 channels. Though baseline frequency of retinal waves was slightly reduced in the TRPM3 KO mice, other properties of waves were indistinguishable from wildtype. Together, these results indicate that the presence of neurosteroids impact spontaneous synaptic activity and retinal waves during development via both TRPM3-dependent and independent mechanisms.


Assuntos
Canais de Cátion TRPM , Animais , Cálcio/metabolismo , Camundongos , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Potenciais Sinápticos , Canais de Cátion TRPM/genética
5.
Cell Res ; 33(8): 575-576, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37402898
6.
PLoS One ; 8(8): e70927, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940669

RESUMO

OBJECTIVE: Microglia are among the first immune cells to respond to ischemic insults. Triggering of this inflammatory response may involve the microglial purinergic GPCR, P2Y12, activation via extracellular release of nucleotides from injured cells. It is also the inhibitory target of the widely used antiplatelet drug, clopidogrel. Thus, inhibiting this GPCR in microglia should inhibit microglial mediated neurotoxicity following ischemic brain injury. METHODS: Experimental cerebral ischemia was induced, in vitro with oxygen-glucose deprivation (OGD), or in vivo via bilateral common carotid artery occlusion (BCCAO). Genetic knock-down in vitro via siRNA, or in vivo P2Y12 transgenic mice (P2Y12-/- or P2Y12+/-), or in vivo treatment with clopidogrel, were used to manipulate the receptor. Neuron death, microglial activation, and microglial migration were assessed. RESULTS: The addition of microglia to neuron-astrocyte cultures increases neurotoxicity following OGD, which is mitigated by microglial P2Y12 deficiency (P<0.05). Wildtype microglia form clusters around these neurons following injury, which is also prevented in P2Y12 deficient microglia (P<0.01). P2Y12 knock-out microglia migrated less than WT controls in response to OGD-conditioned neuronal supernatant. P2Y12 (+/-) or clopidogrel treated mice subjected to global cerebral ischemia suffered less neuronal injury (P<0.01, P<0.001) compared to wild-type littermates or placebo treated controls. There were also fewer microglia surrounding areas of injury, and less activation of the pro-inflammatory transcription factor, nuclear factor Kappa B (NFkB). INTERPRETATION: P2Y12 participates in ischemia related inflammation by mediating microglial migration and potentiation of neurotoxicity. These data also suggest an additional anti-inflammatory, neuroprotective benefit of clopidogrel.


Assuntos
Isquemia Encefálica/metabolismo , Microglia/fisiologia , Receptores Purinérgicos P2Y12/deficiência , Animais , Apoptose , Astrócitos/fisiologia , Isquemia Encefálica/imunologia , Isquemia Encefálica/patologia , Região CA1 Hipocampal/imunologia , Região CA1 Hipocampal/patologia , Hipóxia Celular , Movimento Celular , Sobrevivência Celular , Células Cultivadas , Clopidogrel , Técnicas de Cocultura , Técnicas de Silenciamento de Genes , Glucose/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Neurônios/fisiologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y12/genética , Ticlopidina/análogos & derivados , Ticlopidina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA