RESUMO
Human cytomegalovirus (HCMV) is a major pathogen in immunocompromised patients. The UL146 gene exists as 14 diverse genotypes among clinical isolates, which encode 14 different CXC chemokines. One genotype (vCXCL1GT1) is a known agonist for CXCR1 and CXCR2, while two others (vCXCL1GT5 and vCXCL1GT6) lack the ELR motif considered crucial for CXCR1 and CXCR2 binding, thus suggesting another receptor targeting profile. To determine the receptor target for vCXCL1GT5, the chemokine was probed in a G protein signaling assay on all 18 classical human chemokine receptors, where CXCR2 was the only receptor being activated. In addition, vCXCL1GT5 recruited ß-arrestin in a BRET-based assay and induced migration in a chemotaxis assay through CXCR2, but not CXCR1. In contrast, vCXCL1GT1 stimulated G protein signaling, recruited ß-arrestin and induced migration through both CXCR1 and CXCR2. Both vCXCL1GT1 and vCXCL1GT5 induced equally potent and efficacious migration of neutrophils, and ELR vCXCL1GT4 and non-ELR vCXCL1GT6 activated only CXCR2. In contrast to most human chemokines, the 14 UL146 genotypes have remarkably long C-termini. Comparative modeling using Rosetta showed that each genotype could adopt the classic chemokine core structure, and predicted that the extended C-terminal tail of several genotypes (including vCXCL1GT1, vCXCL1GT4, vCXCL1GT5, and vCXCL1GT6) forms a novel ß-hairpin not found in human chemokines. Secondary NMR shift and TALOS+ analysis of vCXCL1GT1 supported the existence of two stable ß-strands. C-terminal deletion of vCXCL1GT1 resulted in a non-functional protein and in a shift to solvent exposure for tryptophan residues likely due to destabilization of the chemokine fold. The results demonstrate that non-ELR chemokines can activate CXCR2 and suggest that the UL146 chemokines have unique C-terminal structures that stabilize the chemokine fold. Increased knowledge of the structure and interaction partners of the chemokine variants encoded by UL146 is key to understanding why circulating HCMV strains sustain 14 stable genotypes.
Assuntos
Quimiocinas CXC , Citomegalovirus , Neutrófilos , Movimento Celular , Quimiocinas CXC/genética , Citomegalovirus/genética , Genótipo , Humanos , Interleucina-8 , Neutrófilos/citologia , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8B/agonistas , Receptores de Interleucina-8B/genéticaRESUMO
Rationale: Children with preschool wheezing or school-age asthma are reported to have airway microbial imbalances. Objectives: To identify clusters in children with asthma or wheezing using oropharyngeal microbiota profiles. Methods: Oropharyngeal swabs from the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) pediatric asthma or wheezing cohort were characterized using 16S ribosomal RNA gene sequencing, and unsupervised hierarchical clustering was performed on the Bray-Curtis ß-diversity. Enrichment scores of the Molecular Signatures Database hallmark gene sets were computed from the blood transcriptome using gene set variation analysis. Children with severe asthma or severe wheezing were followed up for 12-18 months, with assessment of the frequency of exacerbations. Measurements and Main Results: Oropharyngeal samples from 241 children (age range, 1-17 years; 40% female) revealed four taxa-driven clusters dominated by Streptococcus, Veillonella, Rothia, and Haemophilus. The clusters showed significant differences in atopic dermatitis, grass pollen sensitization, FEV1% predicted after salbutamol, and annual asthma exacerbation frequency during follow-up. The Veillonella cluster was the most allergic and included the highest percentage of children with two or more exacerbations per year during follow-up. The oropharyngeal clusters were different in the enrichment scores of TGF-ß (transforming growth factor-ß) (highest in the Veillonella cluster) and Wnt/ß-catenin signaling (highest in the Haemophilus cluster) transcriptomic pathways in blood (all q values <0.05). Conclusions: Analysis of the oropharyngeal microbiota of children with asthma or wheezing identified four clusters with distinct clinical characteristics (phenotypes) that associate with risk for exacerbation and transcriptomic pathways involved in airway remodeling. This suggests that further exploration of the oropharyngeal microbiota may lead to novel pathophysiologic insights and potentially new treatment approaches.
Assuntos
Asma , Hipersensibilidade , Microbiota , Feminino , Masculino , Humanos , Transcriptoma , Sons Respiratórios/genética , Asma/genética , Microbiota/genéticaRESUMO
The human chemokine family consists of 46 protein ligands that induce chemotactic cell migration by activating a family of 23 G protein-coupled receptors. The two major chemokine subfamilies, CC and CXC, bind distinct receptor subsets. A sequence motif defining these families, the X position in the CXC motif, is not predicted to make significant contacts with the receptor, but instead links structural elements associated with binding and activation. Here, we use comparative analysis of chemokine NMR structures, structural modeling, and molecular dynamic simulations that suggested the X position reorients the chemokine N terminus. Using CXCL12 as a model CXC chemokine, deletion of the X residue (Pro-10) had little to no impact on the folded chemokine structure but diminished CXCR4 agonist activity as measured by ERK phosphorylation, chemotaxis, and Gi/o-mediated cAMP inhibition. Functional impairment was attributed to over 100-fold loss of CXCR4 binding affinity. Binding to the other CXCL12 receptor, ACKR3, was diminished nearly 500-fold. Deletion of Pro-10 had little effect on CXCL12 binding to the CXCR4 N terminus, a major component of the chemokine-GPCR interface. Replacement of the X residue with the most frequent amino acid at this position (P10Q) had an intermediate effect between WT and P10del in each assay, with ACKR3 having a higher tolerance for this mutation. This work shows that the X residue helps to position the CXCL12 N terminus for optimal docking into the orthosteric pocket of CXCR4 and suggests that the CC/CXC motif contributes directly to receptor selectivity by orienting the chemokine N terminus in a subfamily-specific direction.
Assuntos
Quimiocina CXCL12/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores CXCR4/química , Receptores CXCR/química , Motivos de Aminoácidos , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Humanos , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Relação Estrutura-AtividadeRESUMO
Chemokine receptors are a subset of G protein-coupled receptors defined by the distinct property of binding small protein ligands in the chemokine family. Chemokine receptors recognize their ligands by a mechanism that is distinct from other class A GPCRs that bind peptides or small molecules. For this reason, structural information on other ligand-GPCR interactions are only indirectly relevant to understanding the chemokine receptor interface. Additionally, the experimentally determined structures of chemokine-GPCR complexes represent less than 3% of the known interactions of this complex, multi-ligand/multi-receptor network. To enable predictive modeling of the remaining 97% of interactions, a general in silico protocol was designed to utilize existing chemokine receptor crystal structures, co-crystal structures, and NMR ensembles of chemokines bound to receptor fragments. This protocol was benchmarked on the ability to predict each of the three published co-crystal structures, while being blinded to the target structure. Averaging ensembles selected from the top-ranking models reproduced up to 84% of the intermolecular contacts found in the crystal structure, with the lowest Cα-RMSD of the complex at 3.3 Å. The chemokine receptor N-terminus, unresolved in crystal structures, was included in the modeling and recapitulates contacts with known sulfotyrosine binding pockets seen in structures derived from experimental NMR data. This benchmarking experiment suggests that realistic homology models of chemokine-GPCR complexes can be generated by leveraging current structural data.
Assuntos
Simulação de Acoplamento Molecular , Receptores de Quimiocinas/química , Quimiocinas/química , Cristalografia por Raios X , Software , Homologia Estrutural de ProteínaRESUMO
Pectin-based hydrogel microcarriers have shown promise for drug delivery to the colonic region. Microcarriers must remain stable throughout the upper gastrointestinal tract for effective colonic delivery, an issue that traditional pectin-based microcarriers have faced. The positively-charged natural biopolymer oligochitosan and divalent cation Ca2+ were used to dually cross-link pectin-based hydrogel microcarriers to improve carrier stability through simulated gastric and intestinal environments. Microcarriers were characterized with Scanning Electron Microscope and Fourier-Transform Infrared analysis. An optical microscope was used to observe the change of microcarrier size and morphology over time in the simulated gastrointestinal environments. Fluorescently-labeled Dextran was used as a model drug for this system. Calcium-Oligochitosan-Pectin microcarriers exhibited relatively small drug release in the upper gastrointestinal regions and were responsive to the high pH and enzymatic activity of simulated colonic environment (over 94% release after 2 h), suggesting great potential for colonic drug delivery.
Assuntos
Cálcio/química , Quitina/análogos & derivados , Colo/efeitos dos fármacos , Portadores de Fármacos/química , Pectinas/química , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Química Farmacêutica/métodos , Quitina/química , Quitosana , Sistemas de Liberação de Medicamentos/métodos , Concentração de Íons de Hidrogênio , Oligossacarídeos , Solubilidade/efeitos dos fármacosRESUMO
Protein aggregation is a hallmark of the polyglutamine diseases. One potential treatment for these diseases is suppression of polyglutamine aggregation. Previous work identified the cellular slime mold Dictyostelium discoideum as being naturally resistant to polyglutamine aggregation. Further work identified serine-rich chaperone protein 1 (SRCP1) as a protein that is both necessary in Dictyostelium and sufficient in human cells to suppress polyglutamine aggregation. Therefore, understanding how SRCP1 suppresses aggregation may be useful for developing therapeutics for the polyglutamine diseases. Here we utilized a de novo protein modeling approach to generate predictions of SRCP1's structure. Using our best-fit model, we generated mutants that were predicted to alter the stability of SRCP1 and tested these mutants' stability in cells. Using these data, we identified top models of SRCP1's structure that are consistent with the C-terminal region of SRCP1 forming a ß-hairpin with a highly dynamic N-terminal region. We next generated a series of peptides that mimic the predicted ß-hairpin and validated that they inhibit aggregation of a polyglutamine-expanded mutant huntingtin exon 1 fragment in vitro. To further assess mechanistic details of how SRCP1 inhibits polyglutamine aggregation, we utilized biochemical assays to determine that SRCP1 inhibits secondary nucleation in a manner dependent upon the regions flanking the polyglutamine tract. Finally, to determine if SRCP1 more could generally suppress protein aggregation, we confirmed that it was sufficient to inhibit aggregation of polyglutamine-expanded ataxin-3. Together these studies provide details into the structural and mechanistic basis of the inhibition of protein aggregation by SRCP1.
Assuntos
Dictyostelium , Agregados Proteicos , Humanos , Dictyostelium/genética , Dictyostelium/metabolismo , Serina , Chaperonas Moleculares/metabolismo , Peptídeos/química , Proteína Huntingtina/genéticaRESUMO
Up to 25% of the US population harbor Clostridioides difficile in the gut. Following antibiotic disruption of the gut microbiota, C. difficile can act as an opportunistic pathogen and induce potentially lethal infections. Consequently, reducing the colonization of C. difficile in at-risk populations is warranted, prompting us to identify and characterize a probiotic candidate specifically targeting C. difficile colonization. We identified Bacillus velezensis DSM 33864 as a promising strain to reduce C. difficile levels in vitro. We further investigated the effects of B. velezensis DSM 33864 in an assay including human fecal medium and in healthy or clindamycin-treated mouse models of C. difficile colonization. The addition of B. velezensis DSM 33864 to human fecal samples was shown to reduce the colonization of C. difficile in vitro. This was supported in vivo where orally administered B. velezensis DSM 33864 spores reduced C. difficile levels in clindamycin-treated mice. The commensal microbiota composition or post-antibiotic reconstitution was not impacted by B. velezensis DSM 33864 in human fecal samples, short-, or long-term administration in mice. In conclusion, oral administration of B. velezensis DSM 33864 specifically reduced C. difficile colonization in vitro and in vivo without adversely impacting the commensal gut microbiota composition.
Assuntos
Clostridioides difficile , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Clindamicina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , ClostridioidesRESUMO
Long-term inhibition of kappa opioid receptor (KOR) signaling in peripheral pain-sensing neurons is a potential obstacle for development of peripherally-restricted KOR agonists that produce analgesia. Such a long-term inhibitory mechanism is invoked from activation of c-Jun N-terminal kinase (JNK) that follows a single injection of the KOR antagonist norbinaltorphimine (norBNI). This effect requires protein synthesis of an unknown mediator in peripheral pain-sensing neurons. Using 2D difference gel electrophoresis with tandem mass spectrometry, we have identified that the scaffolding protein 14-3-3γ is upregulated in peripheral sensory neurons following activation of JNK with norBNI. Knockdown of 14-3-3γ by siRNA eliminates the long-term reduction in KOR-mediated cAMP signaling by norBNI in peripheral sensory neurons in culture. Similarly, knockdown of 14-3-3γ in the rat hind paw abolished the norBNI-mediated long-term reduction in peripheral KOR-mediated antinociception. Further, overexpression of 14-3-3γ in KOR expressing CHO cells prevented KOR-mediated inhibition of cAMP signaling. These long-term effects are selective for KOR as heterologous regulation of other receptor systems was not observed. These data suggest that 14-3-3γ is both necessary and sufficient for the long-term inhibition of KOR by norBNI in peripheral sensory neurons.
Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno , Receptores Opioides kappa , Proteínas 14-3-3 , Analgésicos , Animais , Cricetinae , Cricetulus , Naltrexona/análogos & derivados , Dor , RNA Interferente Pequeno , Ratos , Receptores Opioides kappa/metabolismoRESUMO
Rationale: There is a major unmet need for improving the care of children and adolescents with severe asthma and wheeze. Identifying factors contributing to disease severity may lead to improved diagnostics, biomarkers, or therapies. The airway microbiota may be such a key factor. Objectives: To compare the oropharyngeal airway microbiota of children and adolescents with severe and mild/moderate asthma/wheeze. Methods: Oropharyngeal swab samples from school-age and preschool children in the European U-BIOPRED (Unbiased BIOmarkers in the PREDiction of respiratory disease outcomes) multicenter study of severe asthma, all receiving severity-appropriate treatment, were examined using 16S ribosomal RNA gene sequencing. Bacterial taxa were defined as amplicon sequence variants. Results: We analyzed 241 samples from four cohorts: A) 86 school-age children with severe asthma; B) 39 school-age children with mild/moderate asthma; C) 65 preschool children with severe wheeze; and D) 51 preschool children with mild/moderate wheeze. The most common bacteria were Streptococcus (mean relative abundance, 33.5%), Veillonella (10.3%), Haemophilus (7.0%), Prevotella (5.9%), and Rothia (5.5%). Age group (school-age vs. preschool) was associated with the microbiota in ß-diversity analysis (F = 3.32, P = 0.011) and in a differential abundance analysis (28 significant amplicon sequence variants). Among all children, we found no significant difference in the microbiota between children with severe and mild/moderate asthma/wheeze in univariable ß-diversity analysis (F = 1.99, P = 0.08, N = 241), but a significant difference in a multivariable model (F = 2.66, P = 0.035), including the number of exacerbations in the previous year. Age was also significant when expressed as a microbial maturity score (Spearman Rho, 0.39; P = 4.6 × 10-10); however, this score was not associated with asthma/wheeze severity. Conclusions: There was a modest difference in the oropharyngeal airway microbiota between children with severe and mild/moderate asthma/wheeze across all children but not in individual age groups, and a strong association between the microbiota and age. This suggests the oropharyngeal airway microbiota as an interesting entity in studying asthma severity, but probably without the strength to serve as a biomarker for targeted intervention.
Assuntos
Asma , Microbiota , Humanos , Adolescente , Pré-Escolar , Sons Respiratórios , Microbiota/genética , Asma/microbiologia , Orofaringe/microbiologia , Bactérias/genéticaRESUMO
Chemokines are soluble, secreted proteins that induce chemotaxis of leukocytes and other cells. Migratory cells can sense the chemokine concentration gradient following chemokine binding and activation of chemokine receptors, a subset of the G protein-coupled receptor (GPCR) superfamily. Chemokine receptor signaling plays a central role in cell migration during inflammatory responses as well as in cancer and other diseases. Given their important role in mediating essential pathologic and physiologic processes, chemokines and their receptors are attractive targets for therapeutic development. A better understanding of the molecular basis of chemokine-GPCR interactions will aid in the understanding of the mechanistic basis for chemokine function in disease-related processes, as well as aid in the design of new therapeutics. High resolution protein structures are critical for determining these mechanisms and investigating the interactions between approximately 50 chemokines and 20 chemokine receptors. Currently, three unique structures of chemokine-GPCR complexes have been determined and have greatly broadened our knowledge of this large protein-protein interaction. While these structures represent only a small fraction of clinically relevant chemokines and receptors, they can be exploited as scaffolds for homology modeling to understand the chemokine-GPCR interactions. This chapter presents a specialized methodology to construct and validate models of chemokine-GPCR complexes using the Rosetta software suite.
Assuntos
Modelos Moleculares , Receptores de Quimiocinas/metabolismo , Animais , HumanosRESUMO
PURPOSE: To improve the stability of pectin-oligochitosan hydrogel microcapsules under physiological conditions. METHODS: Two different approaches were examined: change of the cross-linker length and treatment of the hydrogel microcapsules with 150 Mm CaCl2. Replacement of pectin with alginate was also studied. RESULTS AND CONCLUSIONS: It was observed that the molecular weight of the cross-linker oligochiotsan had no significant improvement on microcapsule stability. On the other hand, the treatment of pectin-oligochitosan microcapsules with Ca2+ increased the microcapsule stability significantly. Different types of alginate were used; however, no red-blood-cell-shaped microcapsules could be produced, which is likely due to the charge-density difference between deprotonated pectin and alginate polymers.