Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Nature ; 630(8018): 866-871, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839964

RESUMO

Membranes are widely used for separation processes in applications such as water desalination, batteries and dialysis, and are crucial in key sectors of our economy and society1. The majority of technologically exploited membranes are based on solid polymers and function as passive barriers, whose transport characteristics are governed by their chemical composition and nanostructure. Although such membranes are ubiquitous, it has proved challenging to maximize selectivity and permeability independently, leading to trade-offs between these pertinent characteristics2. Self-assembled biological membranes, in which barrier and transport functions are decoupled3,4, provide the inspiration to address this problem5,6. Here we introduce a self-assembly strategy that uses the interface of an aqueous two-phase system to template and stabilize molecularly thin (approximately 35 nm) biomimetic block copolymer bilayers of scalable area that can exceed 10 cm2 without defects. These membranes are self-healing, and their barrier function against the passage of ions (specific resistance of approximately 1 MΩ cm2) approaches that of phospholipid membranes. The fluidity of these membranes enables straightforward functionalization with molecular carriers that shuttle potassium ions down a concentration gradient with exquisite selectivity over sodium ions. This ion selectivity enables the generation of electric power from equimolar solutions of NaCl and KCl in devices that mimic the electric organ of electric rays.

2.
Biomacromolecules ; 25(3): 1906-1915, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38394342

RESUMO

Hydroxypropyl cellulose (HPC) is potentially interesting as a biobased, rigid food packaging material, but its stiffness and strength are somewhat low, and its water and oxygen transport rates are too high. To improve these characteristics, we investigated nanocomposites of HPC and cellulose nanocrystals (CNCs). These high-aspect-ratio nanoparticles display high stiffness and strength, and their high crystallinity renders them virtually impermeable. Exchanging the counterions of sulfate-ester decorated CNCs with cetyltrimethylammonium ions affords particles that are dispersible in ethanol (CTA.CNC) and allows solvent casting of HPC/CTA.CNC nanocomposite films, which, even at a CTA.CNC content of 90 wt %, are highly transparent. The introduction of CTA.CNC considerably increases the Young's modulus (Ey) and upper tensile strength (σUTS). For example, in the nanocomposite with 90% CTA.CNC, Ey = 7.6 GPa is increased 20-fold and σUTS = 42.7 MPa is more than doubled in comparison to HPC, whereas the extensibility (1.1%) remains appreciable. Composites with a CTA.CNC content of 70 wt % or less show a lower water vapor permeability (6.4-9.2 × 10-5 g µm m-2 s-1 Pa-1) than the neat HPC (1.5 × 10-4 g µm m-2 s-1 Pa-1), whereas the oxygen permeability (5.6 × 10-7-1.3 × 10-6 cm3 µm m-2 s-1 Pa-1) is reduced by 1 order of magnitude compared to HPC (3.2 × 10-6 cm3 µm m-2 s-1 Pa-1). The biobased nanocomposites retain their mechanical integrity at a relative humidity of 75% but readily disintegrate in water.


Assuntos
Nanocompostos , Nanopartículas , Celulose/química , Resistência à Tração , Módulo de Elasticidade , Permeabilidade , Nanocompostos/química , Nanopartículas/química
3.
Biomacromolecules ; 25(3): 1637-1648, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38381566

RESUMO

Cellulose nanocrystals (CNCs) are bio-based, rod-like, high-aspect-ratio nanoparticles with high stiffness and strength and are widely used as a reinforcing nanofiller in polymer nanocomposites. However, due to hydrogen-bond formation between the large number of hydroxyl groups on their surface, CNCs are prone to aggregate, especially in nonpolar polymer matrices. One possibility to overcome this problem is to graft polymers from the CNCs' surfaces and to process the resulting "hairy nanoparticles" (HNPs) into one-component nanocomposites (OCNs) in which the polymer matrix and CNC filler are covalently connected. Here, we report OCNs based on HNPs that were synthesized by grafting gradient diblock copolymers onto CNCs via surface-initiated atom transfer radical polymerization. The inner block (toward the CNCs) is composed of poly(methyl acrylate) (PMA), and the outer block comprises a gradient copolymer rich in poly(methyl methacrylate) (PMMA). The OCNs based on such HNPs microphase separate into a rubbery poly(methyl acrylate) phase that dissipates mechanical energy and imparts toughness, a glassy PMMA phase that provides strength and stiffness, and well-dispersed CNCs that further reinforce the materials. This design afforded OCNs that display a considerably higher stiffness and strength than reference diblock copolymers without the CNCs. At the same time, the extensibility remains high and the toughness is increased up to 5-fold relative to the reference materials.


Assuntos
Acrilatos , Nanocompostos , Nanopartículas , Celulose/química , Polimetil Metacrilato , Polímeros/química , Nanopartículas/química , Nanocompostos/química
4.
Soft Matter ; 20(9): 2126-2131, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349528

RESUMO

The ability to monitor mechanical stresses and strains in polymers via an optical signal enables the investigation of deformation processes in such materials and is technologically useful for sensing damage and failure in critical components. We show here that this can be achieved by simply blending polymers of interest with a small amount of a mechanochromic luminescent additive (Py-PEB) that can be accessed in one step by end-functionalizing a telechelic poly(ethylene-co-butylene) (PEB) with excimer-forming pyrenes. Py-PEB is poorly miscible with polar polymers, such as poly(ε-caprolactone) and poly(urethane), so that blends undergo microphase separation even at low additive concentrations (0.1-1 wt%), and the emission is excimer-dominated. Upon deformation, the ratio of excimer-to-monomer emission intensity decreases in response to the applied stress or strain. The approach appears to be generalizable, although experiments with poly(isoprene) show that it is not universal and that the (in)solubility of the additive in the polymer must be carefully tuned.

5.
Chem Soc Rev ; 52(2): 728-778, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36537575

RESUMO

Protein-based therapeutics are an attractive alternative to established therapeutic approaches and represent one of the fastest growing families of drugs. While many of these proteins can be delivered using established formulations, the intrinsic sensitivity of proteins to denaturation sometimes calls for a protective carrier to allow administration. Historically, lipid-based self-assembled structures, notably liposomes, have performed this function. After the discovery of polymersome-based targeted drug-delivery systems, which offer manifold advantages over lipid-based structures, the scientific community expected that such systems would take the therapeutic world by storm. However, no polymersome formulations have been commercialised. In this review article, we discuss key obstacles for the sluggish translation of polymersome-based protein nanocarriers into approved pharmaceuticals, which include limitations imparted by the use of non-degradable polymers, the intricacies of polymersome production methods, and the complexity of the in vivo journey of polymersomes across various biological barriers. Considering this complex subject from a polymer chemist's point of view, we highlight key areas that are worthy to explore in order to advance polymersomes to a level at which clinical trials become worthwhile and translation into pharmaceutical and nanomedical applications is realistic.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos , Sistemas de Liberação de Medicamentos/métodos , Proteínas , Lipídeos , Portadores de Fármacos/química
6.
Angew Chem Int Ed Engl ; 63(36): e202405922, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38860450

RESUMO

Many stimuli-responsive materials harness the reversible association of supramolecular binding motifs to enable advanced functionalities such as self-healing, switchable adhesion, or mechanical adaptation. Despite extensive research into the structure-property relationships of these materials, direct correlations between molecular-level changes in supramolecular binding and macroscopic material behaviors have mostly remained elusive. Here, we show that this challenge can be overcome with supramolecular binding motifs featuring integrated binding indicators. We demonstrate this using a novel motif that combines a hydrogen-bonding ureido-4-pyrimidinone (UPy) with two strategically placed pyrene fluorophores. Dimerization of this motif promotes pyrene excimer formation, facilitating the straightforward optical quantification of supramolecular assembly under various conditions. We exploit the new motif as a supramolecular cross-linker in poly(methyl acrylate)s to probe the extent of (dis)assembly as a function of cross-linker content, processing history, and applied stimuli. We demonstrate that the stimuli-induced dissociation of hydrogen-bonding linkages strongly depends on the initial cross-link density, which also dictates whether the force-induced dissociation in polymer films correlates with the applied stress or strain. Thus, beyond introducing a robust tool for the in situ study of dynamic (dis)assembly mechanisms in supramolecular systems, our findings provide new insights into the mechanoresponsive behavior of such materials.

7.
Small ; 19(6): e2205438, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36464635

RESUMO

Creation of color through photonic morphologies manufactured by molecular self-assembly is a promising approach, but the complexity and lack of robustness of the fabrication processes have limited their technical exploitation. Here, it is shown that photonic spheres with full-color tuning across the entire visible spectrum can be readily and reliably achieved by the emulsification of solutions containing a block copolymer (BCP) and two swelling additives. Solvent diffusion out of the emulsion droplets gives rise to 20-150 µm-sized spheres with an onion-like lamellar morphology. Controlling the lamellar thickness by differential swelling with the two additives enables color tuning of the Bragg interference-based reflection band across the entire visible spectrum. By studying five different systems, a set of important principles for manufacturing photonic colloids is established. Two swelling additives are required, one of which must exhibit strong interactions with one of the BCP blocks. The additives should be chosen to enhance the dielectric contrast, and the formation kinetics of the spheres must be sufficiently slow to enable the emergence of the photonic morphology. The proposed approach is versatile and robust and allows the scalable production of photonic pigments with possible future applications in inks for cosmetics and arts, coatings, and displays.

8.
Environ Sci Technol ; 57(45): 17201-17211, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37910579

RESUMO

Research on the origin, distribution, detection, identification, and quantification of polymer nanoparticles (NPs) in the environment and their possible impact on animal and human health is surging. For different types of studies in this field, well-defined reference materials or mimics are needed. While isolated reports on the preparation of such materials are available, a simple and broadly applicable method that allows for the production of different NP types with well-defined, tailorable characteristics is still missing. Here, we demonstrate that a confined impinging jet mixing process can be used to prepare colloidally stable NPs based on polystyrene, polyethylene, polypropylene, and poly(ethylene terephthalate) with diameters below < 100 nm. Different fluorophores were incorporated into the NPs, to allow their detection in complex environments. To demonstrate their utility and detectability, fluorescent NPs were exposed to J774A.1 macrophages and visualized using laser scanning microscopy. Furthermore, we modified the NPs in a postfabrication process and changed their shape from spherical to heterogeneous geometries, in order to mimic environmentally relevant morphologies. The methodology used here should be readily applicable to other polymers and payloads and thus a broad range of NPs that enable studies of their behavior, uptake, translocation, and biological end points in different systems.


Assuntos
Microplásticos , Nanopartículas , Humanos , Polímeros , Polietilenos , Tamanho da Partícula
9.
J Chem Phys ; 158(1): 014901, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36610969

RESUMO

This paper presents a theoretical investigation of the design of a new actuator type made of anisotropic colloidal particles grafted with stimuli-responsive polymer chains. These artificial muscles combine the osmotic actuation principle of stimuli-responsive hydrogels with the structural alignment of colloidal liquid crystals to achieve directional motion. The solubility of the stimuli-responsive polymer in the neutral state, its degree of polymerization, the salt concentration, and the grafting density of the polymer chains on the surface of the colloidal particles are investigated and identified as important for actuator performance and tunability. The computational results suggest that the proposed mechanically active material matches or exceeds the performances of natural muscles and provide the guidelines for the realization of artificial muscles with predetermined actuation properties.


Assuntos
Nanocompostos , Polímeros Responsivos a Estímulos , Polímeros/química , Hidrogéis/química
10.
Angew Chem Int Ed Engl ; 62(36): e202306188, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37439363

RESUMO

Devising energy-efficient strategies for the depolymerization of plastics and the recovery of their structural components in high yield and purity is key to a circular plastics economy. Here, we report a case study in which we demonstrate that vinylogous urethane (VU) vitrimers synthesized from bis-polyethylene glycol acetoacetates (aPEG) and tris(2-aminoethyl)amine can be degraded by water at moderate temperature with almost quantitative recovery (≈98 %) of aPEG. The rate of depolymerization can be controlled by the temperature, amount of water, molecular weight of aPEG, and composition of the starting material. These last two parameters also allow one to tailor the mechanical properties of the final materials, and this was used to access soft, tough, and brittle vitrimers, respectively. The straightforward preparation and depolymerization of the aPEG-based VU vitrimers are interesting elements for the design of polymer materials with enhanced closed-loop recycling characteristics.

11.
Angew Chem Int Ed Engl ; 62(3): e202212870, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36394348

RESUMO

The chemical upcycling of polymers is an emerging strategy to transform post-consumer waste into higher-value chemicals and materials. However, on account of the high stability of the chemical bonds that constitute their main chains, the chemical modification of many polymers proves to be difficult. Here, we report a versatile approach for the upcycling of linear and cross-linked polyureas, which are widely used because of their high chemical stability. The treatment of these polymers or their composites with acetylacetone affords di-vinylogous amide-terminated compounds in good yield. These products can be reacted with aromatic isocyanates, and the resulting aminoketoenamide bonds are highly dynamic at elevated temperatures. We show here that this conversion scheme can be exploited for the preparation of dynamic covalent poly(aminoketoenamide) networks, which are healable and reprocessable through thermal treatment without any catalyst.

12.
Biomacromolecules ; 23(3): 699-707, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35029986

RESUMO

One of the main challenges associated with the modification of cellulose nanocrystals (CNCs) with polymers by surface-initiated polymerization is the characterization of the resulting products, notably the molecular weight of the grafts. The solid nature of the (modified) CNC nanoparticles limits the possibility to apply solution-based characterization techniques, and the cleavage of the macromolecules from the surface of the CNCs to enable their characterization using solution-based techniques is intricate. Here, we report that 1H NMR spectroscopy of the supernatant of the heterogeneous reaction mixture can be used to approximate the molecular weight of poly(hexyl methacrylate) grafts grown from the surface of CNCs via surface-initiated atom transfer radical polymerization. This was achieved using 1H NMR spectra to determine the monomer conversion from the change of the relative ratio of monomer and solvent signals in the 1H NMR spectra, which in turn allowed determining the weight of PHMA produced. The number-average molecular weight of the grafted polymer was then estimated by assuming that standard atom transfer radical polymerization kinetics are at play and using the initiator concentration on the CNC surface determined by elemental analysis. The method was validated by comparing the results with the gravimetric data and the data of free polymers that were synthesized with a sacrificial initiator.


Assuntos
Celulose , Nanopartículas , Celulose/química , Peso Molecular , Nanopartículas/química , Polimerização , Polímeros/química
13.
Macromol Rapid Commun ; 43(3): e2100654, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34792266

RESUMO

Many organisms rely on directional water transport schemes for the purpose of water retention and collection. Directional transport of water and other fluids is also technologically relevant, for example to harvest water, in separation processes, packaging solutions, functional clothing, and many other applications. One strategy to promote mass transport along a preferential direction is to create compositionally asymmetric, multi-layered, or compositionally graded architectures. In recent years, the investigation of natural and artificial membranes based on this design has attracted growing interest and allowed researchers to develop a good understanding of how the properties of such membranes can be tailored to meet the demands of particular applications. Here a summary of theoretical works on mass transport through dense asymmetric membranes, comprehensive reviews of biological and artificial membranes featuring this design, and a discussion of applications, remaining questions, and opportunities are provided.


Assuntos
Membranas Artificiais , Polímeros , Água
14.
Angew Chem Int Ed Engl ; 61(42): e202209225, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-35950260

RESUMO

Mechanochromic mechanophores are reporter molecules that indicate mechanical events through changes of their photophysical properties. Supramolecular mechanophores in which the activation is based on the rearrangement of luminophores and/or quenchers without any covalent bond scission, remain less well investigated. Here, we report a cyclophane-based supramolecular mechanophore that contains a 1,6-bis(phenylethynyl)pyrene luminophore and a pyromellitic diimide quencher. In solution, the blue monomer emission of the luminophore is largely quenched and a faint reddish-orange emission originating from a charge-transfer (CT) complex is observed. A polyurethane elastomer containing the mechanophore displays orange emission in the absence of force, which is dominated by the CT-emission. Mechanical deformation causes a decrease of the CT-emission and an increase of blue monomer emission, due to the spatial separation between the luminophore and quencher. The ratio of the two emission intensities correlates with the applied stress.

15.
J Am Chem Soc ; 143(45): 18859-18863, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34735137

RESUMO

Covalent mechanophores display the cleavage of a weak covalent bond when a sufficiently high mechanical force is applied. Three different covalent bond breaking mechanisms have been documented thus far, including concerted, homolytic, and heterolytic scission. Motifs that display heterolytic cleavage typically separate according to non-scissile reaction pathways that afford zwitterions. Here, we report a new mechanochromic triarylmethane mechanophore, which dissociates according to a scissile heterolytic pathway and displays a pronounced mechanochromic response. The mechanophore was equipped with two styrenylic handles that allowed its incorporation as a cross-linker into poly(N,N-dimethylacrylamide) and poly(methyl acrylate-co-2-hydroxyethyl acrylate) networks. These materials are originally colorless, but compression or tensile deformation renders the materials colored. By combining tensile testing and in situ transmittance measurements, we show that this effect is related to scissile cleavage leading to colored triarylmethane carbocations.

16.
J Am Chem Soc ; 143(14): 5519-5525, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33784073

RESUMO

A new approach to cyclophane-based supramolecular mechanophores is presented. We report a mechanically responsive cyclic motif that contains two fluorescent 1,6-bis(phenylethynyl)pyrene moieties that are capable of forming intramolecular excimers. The emission spectra of dilute solutions of this cyclophane and a polyurethane elastomer into which a small amount of the mechanophore (0.08 wt %) had been covalently integrated are dominated by excimer emission. Films of the cyclophane-containing polyurethane also display a considerable portion of excimer emission, but upon deformation, the fluorescence becomes monomer-dominated and a perceptible change from cyan to blue is observed. The response is instant, reversible, and consistent with a mechanically induced change of the molecular conformation of the mechanophore so that the excimer-promoting interactions between the luminophores are suppressed. In-depth investigations show a correlation between the applied strain and the emission color, which can conveniently be expressed by the ratio of monomer to excimer emission intensity. The current study suggests that cyclophanes can be utilized to develop various supramolecular mechanophores that detect and visualize weak forces occurring in polymeric materials or generated by living tissues.


Assuntos
Éteres Cíclicos/química , Substâncias Luminescentes/química , Fenômenos Mecânicos , Polímeros/química
17.
J Am Chem Soc ; 143(26): 9884-9892, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34162206

RESUMO

Mechanochromic mechanophores permit the design of polymers that indicate mechanical events through optical signals. Here we report rotaxane-based supramolecular mechanophores that display both reversible and irreversible fluorescence changes. These responses are triggered by different forces and are achieved by exploiting the molecular shuttling function and force-induced dethreading of rotaxanes. The new rotaxane mechanophores are composed of a ring featuring a luminophore, which is threaded onto an axle with a matching quencher and two stoppers. In the stress-free state, the luminophore is preferentially located in the proximity of the quencher, and the emission is quenched. The luminophore slides away from the quencher when a force is applied and the fluorescence is switched on. This effect is reversible, unless the force is so high that the luminophore-carrying ring slips past the stopper and dethreading occurs. We show that the combination of judiciously selected ring and stopper moieties is crucial to attain interlocked structures that display such a dual response. PU elastomers that contain such doubly responsive rotaxanes exhibit reversible fluorescence changes over multiple loading-unloading cycles due to the shuttling function, whereas permanent changes are observed upon repeated deformations to high strains due to breakage of the mechanical bond upon dethreading of the ring from the axle. This response allows one, at least conceptually, to monitor the actual deformation of polymer materials and examine mechanical damage that was inflicted in the past on the basis of an optical signal.

18.
Biomacromolecules ; 22(12): 5087-5096, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34734702

RESUMO

On account of their high strength and stiffness and their renewable nature, cellulose nanocrystals (CNCs) are widely used as a reinforcing component in polymer nanocomposites. However, CNCs are prone to aggregation and this limits the attainable reinforcement. Here, we show that nanocomposites with a very high CNC content can be prepared by combining the cationic polymer poly[(2-(methacryloyloxy)ethyl) trimethylammonium chloride] (PMETAC) and negatively charged, carboxylated CNCs that are provided as a sodium salt (CNC-COONa). Free-standing films of the composites can be prepared by simple solvent casting from water. The appearance and polarized optical microscopy and electron microscopy images of these films suggest that CNC aggregation is absent, and this is supported by the very pronounced reinforcement observed. The incorporation of 33 wt % CNC-COONa into PMETAC allowed increasing the storage modulus of this already rather stiff, glassy amorphous matrix polymer from 1.5 ± 0.3 to 6.6 ± 0.1 GPa, while the maximum strength increased from 11 to 32 MPa. At this high CNC content, the reinforcement achieved in the PMETAC/CNC-COONa nanocomposite is much more pronounced than that observed for a reference nanocomposite made with unmodified CNCs (CNC-OH).


Assuntos
Nanocompostos , Nanopartículas , Celulose/química , Nanocompostos/química , Nanopartículas/química , Polímeros , Eletricidade Estática
19.
Biomacromolecules ; 22(8): 3552-3564, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34297531

RESUMO

The hydrophilic polymer poly[2-(2-(2-methoxy ethoxy)ethoxy)ethylacrylate] (POEG3A) was grafted onto the reducing end-groups (REGs) of cellulose nanocrystal (CNC) allomorphs, and their liquid crystalline properties were investigated. The REGs on CNCs extracted from cellulose I (CNC-I) are exclusively located at one end of the crystallite, whereas CNCs extracted from cellulose II (CNC-II) feature REGs at both ends of the crystallite, so that grafting from the REGs affords asymmetrically and symmetrically decorated CNCs, respectively. To confirm the REG modification, several complementary analytical techniques were applied. The grafting of POEG3A onto the CNC REGs was evidenced by Fourier transform infrared spectroscopy, atomic force microscopy, and the coil-globule conformational transition of this polymer above 60 °C, i.e., its lower critical solution temperature. Furthermore, we investigated the self-assembly of end-tethered CNC-hybrids into chiral nematic liquid crystalline phases. Above a critical concentration, both end-grafted CNC allomorphs form chiral nematic tactoids. The introduction of POEG3A to CNC-I does not disturb the surface of the CNCs along the rods, allowing the modified CNCs to approach each other and form helicoidal textures. End-grafted CNC-II formed chiral nematic tactoids with a pitch observable by polarized optical microscopy. This is likely due to their increase in hydrodynamic radius or the introduced steric stabilization of the end-grafted polymer.


Assuntos
Cristais Líquidos , Nanopartículas , Celulose , Interações Hidrofóbicas e Hidrofílicas , Polímeros
20.
Biomacromolecules ; 22(6): 2702-2717, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34060815

RESUMO

When cellulose nanocrystals (CNCs) are isolated from cellulose microfibrils, the parallel arrangement of the cellulose chains in the crystalline domains is retained so that all reducing end-groups (REGs) point to one crystallite end. This permits the selective chemical modification of one end of the CNCs. In this study, two reaction pathways are compared to selectively attach atom-transfer radical polymerization (ATRP) initiators to the REGs of CNCs, using reductive amination. This modification further enabled the site-specific grafting of the anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS) from the CNCs. Different analytical methods, including colorimetry and solution-state NMR analysis, were combined to confirm the REG-modification with ATRP-initiators and PSS. The achieved grafting yield was low due to either a limited conversion of the CNC REGs or side reactions on the polymerization initiator during the reductive amination. The end-tethered CNCs were easy to redisperse in water after freeze-drying, and the shear birefringence of colloidal suspensions is maintained after this process.


Assuntos
Celulose , Nanopartículas , Polimerização , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA