Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Bioorg Chem ; 110: 104747, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33799177

RESUMO

Many studies have investigated how trehalose glycolipid structures can be modified to improve their Macrophage inducible C-type lectin (Mincle)-mediated adjuvanticity. However, in all instances, the ester-linkage of α,ά-trehalose to the lipid of choice remained. We investigated how changing this ester-linkage to an amide influences Mincle signalling and agonist activity and demonstrated that Mincle tolerates this functional group change. In in vivo vaccination studies in murine and ovine model systems, using OVA or Mannheimia haemolytica and Mycoplasma ovipneumoniae as vaccine antigens, respectively, it was demonstrated that a representative trehalose diamide glycolipid was able to enhance antibody-specific immune responses. Notably, IgG titres against M. ovipneumoniae were significantly greater when using trehalose dibehenamide (A-TDB) compared to trehalose dibehenate (TDB). This is particularly important as infection with M. ovipneumoniae predisposes sheep to pneumonia.


Assuntos
Especificidade de Anticorpos/efeitos dos fármacos , Antígenos/imunologia , Diamida/química , Glicolipídeos/química , Glicolipídeos/farmacologia , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/farmacologia , Animais , Diamida/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Lectinas Tipo C/agonistas , Lectinas Tipo C/genética , Proteínas de Membrana/agonistas , Proteínas de Membrana/genética , Camundongos , Ovalbumina/imunologia
2.
Biochem Biophys Res Commun ; 524(4): 825-831, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32037086

RESUMO

Chromatin organization starts from a "beads-on-a string" 10 nm fiber, a basic nucleosomal structure consisting of DNA and core histones. Given its regular nucleosome array on DNA backbone where N-terminal tails of each histone are exposed on the surface of chromatin fiber, we hypothesized that chromatin can be utilized as a heterologous peptide carrier to elicit a peptide-specific immune response. The plasmid DNA containing the Widom's clone 601 sequence and the recombinant chimeric histones containing the peptide derived from ras oncogene (G12V) were used to assemble the chromatin fiber in vitro. The immunogenicity of the assembled chromatin was tested in mice as a single vaccine component or formulated with adjuvants. G12V tagged-chromatin co-administered with adjuvants induced higher antibody responses against the G12V peptide than vaccination with adjuvant alone, while chimeric histones did not generate a significant antibody response. Interestingly, splenocytes from mice vaccinated with the G12V tagged-chromatin vaccine did not generate significant antigen-specific cytokine responses. Our studies suggest that chromatin can be utilized as an effective carrier of antigenic peptides for inducing specific antibody responses.


Assuntos
Vacinas Anticâncer/biossíntese , Genes ras/imunologia , Histonas/imunologia , Nanofibras/química , Biblioteca de Peptídeos , Peptídeos/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Animais , Anticorpos/genética , Anticorpos/metabolismo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Montagem e Desmontagem da Cromatina , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Nucleossomos/química , Nucleossomos/imunologia , Nucleossomos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Plasmídeos/química , Plasmídeos/imunologia , Plasmídeos/metabolismo , Vacinas de Subunidades Antigênicas , Xenopus laevis
3.
J Dairy Sci ; 101(11): 10259-10270, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30197143

RESUMO

Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease in ruminants, which is characterized by chronic progressive granulomatous enteritis. The infection leads to wasting and weight loss in the animals and eventually death, causing considerable production losses to the agricultural industry worldwide. Currently available ELISA- and PCR-based diagnostic tests have limited sensitivity and specificity during early MAP infection in cattle, suggesting that there is an urgent demand for alternative diagnostic tests. Circulating microRNA (miRNA) have recently gained attention as potential biomarkers for several diseases in humans. However, knowledge and use of miRNA as biomarkers in diseases of ruminants, including Johne's disease, are very limited. Here we used NanoString nCounter technology (NanoString, Seattle, WA), a digital platform for amplification-free and hybridization-based quantitative measurement of miRNA in the sera of noninfected and naturally MAP-infected cattle with different severity of infection. Using probes developed against human miRNA, 26 miRNA were detected in cattle serum; 13 of these miRNA were previously uncharacterized for cattle. Canonical discrimination analysis using 20 miRNA grouped animals into 4 distinct clusters based on their disease status, suggesting that the levels of these miRNA can reflect disease severity. A model was developed using a combination of 4 miRNA (miR-1976, miR-873-3p, miR-520f-3p, and miR-126-3p), which distinguished moderate and severely infected animals from noninfected animals. Our study demonstrated the ability of the NanoString nCounter technology to detect differential expression of circulating miRNA in cattle and contributes to widely growing evidence that miRNA can be used as biomarkers in infectious diseases in cattle.


Assuntos
Doenças dos Bovinos/diagnóstico , Perfilação da Expressão Gênica/veterinária , MicroRNAs/sangue , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/diagnóstico , Animais , Biomarcadores/análise , Bovinos , Doenças dos Bovinos/microbiologia , Feminino , Perfilação da Expressão Gênica/instrumentação , Perfilação da Expressão Gênica/métodos , Humanos , Mycobacterium avium subsp. paratuberculosis/genética , Paratuberculose/microbiologia , Sensibilidade e Especificidade
4.
Int J Med Microbiol ; 306(8): 624-632, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27756533

RESUMO

Traditional approaches to vaccine development have failed to identify better vaccines to replace or supplement BCG for the control of tuberculosis (TB). Subunit vaccines offer a safer and more reproducible alternative for the prevention of diseases. In this study, the immunogenicity of bacterially derived polyester beads displaying three different Rv antigens of Mycobacterium tuberculosis was evaluated. Polyester beads displaying the antigens Rv1626, Rv2032, Rv1789, respectively, were produced in an endotoxin-free Escherichia coli strain. Beads were formulated with the adjuvant DDA and subcutaneously administered to C57BL/6 mice. Cytokine responses were evaluated by CBA and antibody responses by ELISA. Specificity of the IgG response was assessed by immunoblotting cell lysates of the vaccine production strains using sera from the vaccinated mice. Mice vaccinated with beads displaying Rv1626 had significantly greater IgG1 responses compared to mice vaccinated with Rv1789 beads and greater IgG2 responses than the group vaccinated with Rv2032 beads (p<0.05). Immunoblotting of antisera from these mice indicated the antibody responses were Rv1626 antigen-specific and there was no detectable immune response to the polyester component of the vaccine. Overall, this study suggested that selected TB antigens derived from reverse vaccinology approaches can be displayed on polyester beads to produce antigen-specific immune responses potentially relevant to the prevention of TB.


Assuntos
Antígenos de Bactérias/imunologia , Portadores de Fármacos/metabolismo , Mycobacterium tuberculosis/imunologia , Nanopartículas/metabolismo , Poliésteres/metabolismo , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Immunoblotting , Imunoglobulina G/sangue , Injeções Subcutâneas , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Mycobacterium tuberculosis/metabolismo , Tuberculose/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/isolamento & purificação , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/isolamento & purificação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação
5.
Appl Environ Microbiol ; 80(8): 2526-35, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24532066

RESUMO

The tuberculin skin test for diagnosing tuberculosis (TB) in cattle lacks specificity if animals are sensitized to environmental mycobacteria, as some antigens in purified protein derivative (PPD) prepared from Mycobacterium bovis are present in nonpathogenic mycobacteria. Three immunodominant TB antigens, ESAT6, CFP10, and Rv3615c, are present in members of the pathogenic Mycobacterium tuberculosis complex but absent from the majority of environmental mycobacteria. These TB antigens have the potential to enhance skin test specificity. To increase their immunogenicity, these antigens were displayed on polyester beads by translationally fusing them to a polyhydroxyalkanoate (PHA) synthase which mediated formation of antigen-displaying inclusions in recombinant Escherichia coli. The most common form of these inclusions is poly(3-hydroxybutyric acid) (PHB). The respective fusion proteins displayed on these PHB inclusions (beads) were identified using tryptic peptide fingerprinting analysis in combination with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The surface exposure and accessibility of antigens were assessed by enzyme-linked immunosorbent assay (ELISA). Polyester beads displaying all three TB antigens showed greater reactivity with TB antigen-specific antibody than did beads displaying only one TB antigen. This was neither due to cross-reactivity of antibodies with the other two antigens nor due to differences in protein expression levels between beads displaying single or three TB antigens. The triple-antigen-displaying polyester beads were used for skin testing of cattle and detected all cattle experimentally infected with M. bovis with no false-positive reactions observed in those sensitized to environmental mycobacteria. The results suggested applicability of TB antigen-displaying polyester inclusions as diagnostic reagents for distinguishing TB-infected from noninfected animals.


Assuntos
Antígenos de Bactérias , Testes Diagnósticos de Rotina/métodos , Testes Cutâneos/métodos , Tuberculose Bovina/diagnóstico , Medicina Veterinária/métodos , Animais , Bovinos , Escherichia coli/genética , Microesferas , Poliésteres , Proteínas Recombinantes de Fusão , Sensibilidade e Especificidade
6.
PLoS One ; 18(1): e0278853, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36656850

RESUMO

Bronchopneumonia is a common respiratory disease in livestock. Mannheimia haemolytica is considered the main causative pathogen leading to lung damage in sheep, with Mycoplasma ovipneumoniae and ParaInfluenza virus type 3, combined with adverse physical and physiological stress, being predisposing factors. A balance of humoral and cellular immunity is thought to be important for protection against developing respiratory disease. In the current study, we compared the ability of the trehalose glycolipid adjuvant C18Brar (C18-alkylated brartemicin analogue) and three commercially available adjuvant systems i.e., Quil-A, Emulsigen-D, and a combination of Quil-A and aluminium hydroxide gel, to stimulate antibody and cellular immune responses to antigens from inactivated whole cells of M. haemolytica and M. ovipneumoniae in sheep. C18Brar and Emulsigen-D induced the strongest antigen-specific antibody responses to both M. haemolytica and M. ovipneumoniae, while C18Brar and Quil-A promoted the strongest antigen-specific IL-17A responses. The expression of genes with known immune functions was determined in antigen-stimulated blood cultures using Nanostring nCounter technology. The expression levels of CD40, IL22, TGFB1, and IL2RA were upregulated in antigen-stimulated blood cultures from animals vaccinated with C18Brar, which is consistent with T-cell activation. Collectively, the results demonstrate that C18Brar can promote both antibody and cellular responses, notably Th17 immune responses in a ruminant species.


Assuntos
Mannheimia haemolytica , Mycoplasma ovipneumoniae , Doenças dos Ovinos , Ovinos , Animais , Mycoplasma ovipneumoniae/genética , Trealose , Linfócitos T , Anticorpos , Imunidade
8.
Front Immunol ; 13: 1087015, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741398

RESUMO

Mycobacterium avium subspecies paratuberculosis (MAP) causes chronic progressive granulomatous enteritis leading to diarrhea, weight-loss, and eventual death in ruminants. Commercially available vaccine provides only partial protection against MAP infection and can interfere with the use of current diagnostic tests for bovine tuberculosis in cattle. Here, we characterized immune responses in calves to vaccines containing four truncated MAP antigens as a fusion (Ag85A202-347-SOD1-72-Ag85B173-330-74F1-148+669-786), either displayed on protein particles, or expressed as a soluble recombinant MAP (rMAP) fusion protein as well as to commercially available Silirum® vaccine. The rMAP fusion protein elicited the strongest antigen-specific antibody responses to both PPDA and recombinant antigen and strong and long-lasting T-cell immune responses to these antigens, as indicated by increased production of IFN-γ and IL-17A in antigen-stimulated whole blood cultures. The MAP fusion protein particle vaccine induced minimal antibody responses and weak IFN-γ responses but stimulated IL-17A responses to recombinant antigen. The immune response profile of Silirum® vaccine was characterized by weak antibodies and strong IFN-γ and IL-17A responses to PPDA. Transcription analysis on antigen-stimulated leukocytes from cattle vaccinated with rMAP fusion protein showed differential expression of several immune response genes and genes involved in costimulatory signaling, TLR4, TLR2, PTX3, PTGS2, PD-L1, IL1B, IL2, IL6, IL12B, IL17A, IL22, IFNG, CD40, and CD86. Moreover, the expression of several genes of immune pathways correlated with cellular immune responses in the rMAP fusion protein vaccinated group. These genes have key roles in pathways of mycobacterial immunity, including autophagy, manipulation of macrophage-mediated killing, Th17- and regulatory T cells- (Treg) mediated responses. Calves vaccinated with either the rMAP fusion protein or MAP fusion protein particle vaccine did not induce reactivity to PPDA and PPDB in a comparative cervical skin test, whereas Silirum® induced reactivity to these tuberculins in most of the vaccinated animals. Overall, our results suggest that a combination of recombinant MAP antigens in the form of a soluble fusion protein vaccine are capable of inducing strong antigen-specific humoral and a balanced Th1/Th17-cell immune response. These findings, together with the absence of reactivity to tuberculin, suggest this subunit vaccine could provide protective immunity against intracellular MAP infection in cattle without compromising the use of current bovine tuberculosis surveillance test.


Assuntos
Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Tuberculose Bovina , Bovinos , Animais , Tuberculina , Interleucina-17 , Tuberculose Bovina/diagnóstico , Imunidade Celular , Teste Tuberculínico , Proteínas Recombinantes
9.
Front Microbiol ; 13: 918111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071968

RESUMO

Methane is produced in the rumen of ruminant livestock by methanogens, accounting for approximately 14.5% of anthropogenic greenhouse gas emissions in terms of global warming potential. The rumen contains a diversity of methanogens species, and only a few of these have been cultured. Immunomagnetic capture technology (ICT) is a simple and effective method to capture and concentrate target organisms in samples containing complex microflora. We hypothesized that antibody-coated magnetic beads could be used to demonstrate antibody specificity and cross-reactivity to methanogens in rumen samples. Sheep polyclonal antibodies raised against four isolates of rumen dwelling methanogens, Methanobrevibacter ruminantium strain M1, Methanobrevibacter sp. AbM4, Methanobrevibacter sp. D5, and Methanobrevibacter sp. SM9 or an equal mix of all four isolates, were used to coat paramagnetic beads. ICT was used together with flow cytometry and qPCR to optimize key parameters: the ratio of antibody to beads, coupling time between antibody and paramagnetic beads to produce immunomagnetic beads (IMBs), and optimal incubation time for the capture of methanogen cells by IMBs. Under optimized conditions, IMBs bound strongly to their respective isolates and showed a degree of cross-reactivity with isolates of other Methanobrevibacter spp. in buffer and in rumen fluid, and with resident methanogens in rumen content samples. The evidence provided here indicates that this method can be used to study the interaction of antibodies with antigens of rumen methanogens, to understand antigen cross-reactivity and antibody binding efficiency for the evaluation of antigens used for the development of a broad-spectrum anti-methanogen vaccine for the abatement of methane production.

10.
Sci Rep ; 12(1): 10394, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729277

RESUMO

In silico prediction of epitopes is a potentially time-saving alternative to experimental epitope identification but is often subject to misidentification of epitopes and may not be useful for proteins from archaeal microorganisms. In this study, we mapped B- and T-cell epitopes of a model antigen from the methanogen Methanobrevibacter ruminantium M1, the Big_1 domain (AdLP-D1, amino acids 19-198) of an adhesin-like protein. A series of 17 overlapping 20-mer peptides was selected to cover the Big_1 domain. Peptide-specific antibodies were produced in mice and measured by ELISA, while an in vitro splenocyte re-stimulation assay determined specific T-cell responses. Overall, five peptides of the 17 peptides were shown to be major immunogenic epitopes of AdLP-D1. These immunogenic regions were examined for their localization in a homology-based model of AdLP-D1. Validated epitopes were found in the outside region of the protein, with loop like secondary structures reflecting their flexibility. The empirical data were compared with epitope predictions made by programmes based on a range of algorithms. In general, the epitopes identified by in silico predictions were not comparable to those determined empirically.


Assuntos
Adesinas Bacterianas , Methanobrevibacter , Adesinas Bacterianas/metabolismo , Algoritmos , Animais , Mapeamento de Epitopos , Epitopos de Linfócito T , Methanobrevibacter/metabolismo , Camundongos , Peptídeos/metabolismo
11.
PLoS One ; 16(2): e0246573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539437

RESUMO

Mycoplasma ovipneumoniae infects both sheep and goats causing pneumonia resulting in considerable economic losses worldwide. Current diagnosis methods such as bacteriological culture, serology, and PCR are time consuming and require sophisticated laboratory setups. Here we report the development of two rapid, specific and sensitive assays; an isothermal DNA amplification using recombinase polymerase amplification (RPA) and a real-time PCR for the detection of M. ovipneumoniae. The target for both assays is a specific region of gene WP_069098309.1, which encodes a hypothetical protein and is conserved in the genome sequences of ten publicly available M. ovipneumoniae strains. The RPA assay performed well at 39°C for 20 min and was combined with a lateral flow dipstick (RPA-LFD) for easy visualization of the amplicons. The detection limit of the RPA-LFD assay was nine genome copies of M. ovipneumoniae per reaction and was comparable to sensitivity of the real-time PCR assay. Both assays showed no cross-reaction with 38 other ovine and caprine pathogenic microorganisms and two parasites of ruminants, demonstrating a high degree of specificity. The assays were validated using bronchoalveolar lavage fluid and nasal swab samples collected from sheep. The positive rate of RPA-LFD (97.4%) was higher than the real-time PCR (95.8%) with DNA as a template purified from the clinical samples. The RPA assay was significantly better at detecting M. ovipneumoniae in clinical samples compared to the real-time PCR when DNA extraction was omitted (50% and 34.4% positive rate for RPA-LFD and real-time PCR respectively). The RPA-LFD developed here allows easy and rapid detection of M. ovipneumoniae infection without DNA extraction, suggesting its potential as a point-of-care test for field settings.


Assuntos
Mycoplasma ovipneumoniae/patogenicidade , Pneumonia por Mycoplasma/microbiologia , Recombinases/metabolismo , Animais , Mycoplasma ovipneumoniae/genética , Mycoplasma ovipneumoniae/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico , Plasmídeos/genética , Pneumonia por Mycoplasma/genética , Reação em Cadeia da Polimerase em Tempo Real
12.
Sci Rep ; 10(1): 22289, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339863

RESUMO

Mycobacterium avium subspecies paratuberculosis (MAP) causes chronic progressive granulomatous enteritis leading to diarrhoea, weight loss, and eventual death in ruminants. Commercially available vaccines provide only partial protection against MAP infection and can compromise the use of bovine tuberculosis diagnostic tests. Here, we report the development of a protein-particle-based vaccine containing MAP antigens Ag85A202-347-SOD1-72-Ag85B173-330-74F1-148+669-786 as a fusion ('MAP fusion protein particle'). The fusion antigen displayed on protein particles was identified using mass spectrometry. Surface exposure and accessibility of the fusion antigen was confirmed by flow cytometry and ELISA. The MAP fusion protein particle vaccine induced strong antigen-specific T-cell immune responses in mice, as indicated by increased cytokine (IFN-γ and IL-17A) and costimulatory signals (CD40 and CD86) in these animals. Following MAP-challenge, a significant reduction in bacterial burden was observed in multiple organs of the mice vaccinated with the MAP fusion protein particle vaccine compared with the PBS group. The reduction in severity of MAP infection conferred by the MAP fusion protein particle vaccine was similar to that of Silirum and recombinant protein vaccines. Overall, the results provide evidence that MAP antigens can be engineered as a protein particulate vaccine capable of inducing immunity against MAP infection. This utility offers an attractive platform for production of low-cost particulate vaccines against other intracellular pathogens.


Assuntos
Vacinas Bacterianas/farmacologia , Doenças dos Bovinos/imunologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/imunologia , Animais , Vacinas Bacterianas/imunologia , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/prevenção & controle , Ensaio de Imunoadsorção Enzimática , Feminino , Imunidade/imunologia , Interferon gama/imunologia , Interleucina-17/imunologia , Camundongos , Mycobacterium avium subsp. paratuberculosis/patogenicidade , Paratuberculose/microbiologia , Paratuberculose/prevenção & controle , Vacinação , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/farmacologia
13.
Appl Environ Microbiol ; 75(24): 7739-44, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19837843

RESUMO

Bioengineered bacterial polyester inclusions have the potential to be used as a vaccine delivery system. The biopolyester beads were engineered to display a fusion protein of the polyester synthase PhaC and the two key antigens involved in immune response to the infectious agent that causes tuberculosis, Mycobacterium tuberculosis, notably antigen 85A (Ag85A) and the 6-kDa early secreted antigenic target (ESAT-6) from Mycobacterium tuberculosis. Polyester beads displaying the respective fusion protein at a high density were successfully produced (henceforth called Ag85A-ESAT-6 beads) by recombinant Escherichia coli. The ability of the Ag85A-ESAT-6 beads to enhance mouse immunity to the displayed antigens was investigated. The beads were not toxic to the animals, as determined by weight gain and absence of lesions at the inoculation site in immunized animals. In vivo injection of the Ag85A-ESAT-6 beads in mice induced significant humoral and cell-mediated immune responses to both Ag85A and ESAT-6. Vaccination with Ag85A-ESAT-6 beads was efficient at stimulating immunity on their own, and this ability was enhanced by administration of the beads in an oil-in-water emulsion. In addition, vaccination with the Ag85A-ESAT-6 beads induced significantly stronger humoral and cell-mediated immune responses than vaccination with an equivalent dose of the fusion protein Ag85A-ESAT-6 alone. The immune response induced by the beads was of a mixed Th1/Th2 nature, as assessed from the induction of the cytokine gamma interferon (Th1 immune response) and increased levels of immunoglobulin G1 (Th2 immune response). Hence, engineered biopolyester beads displaying foreign antigens represent a new class of versatile, safe, and biocompatible vaccines.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Microesferas , Poliésteres/administração & dosagem , Vacinas contra a Tuberculose/administração & dosagem , Aciltransferases/genética , Aciltransferases/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Escherichia coli/genética , Feminino , Imunidade Celular , Interferon gama/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/imunologia , Proteínas Recombinantes de Fusão/imunologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose/imunologia
14.
Vet Res Commun ; 32(6): 439-47, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18425595

RESUMO

Dairy cows are especially vulnerable to intramammary infection by the bacterial pathogen Streptococcus uberis in the dry period. Use of immunotherapeutic agents at drying off could increase cellular defences in the gland and prevent establishment of new S. uberis infections. This study investigated the potential of infusing recombinant bovine interleukin-1 beta (rbIL-1beta) in the mammary glands as a prophylactic agent against subsequent intramammary challenge with S. uberis in the early dry period. Immediately after the last milking at commencement of the dry period, one cow from each of 10 monozygous twinsets was infused with 10 microg of rbIL-1beta in two quarters and the other twin was infused with the carrier agent, sterile phosphate buffered saline. Twenty-four hours later, the quarters were infused with 10(3) colony-forming units (CFU) of S. uberis. Bacteriology, somatic cell count (SCC), concentrations of specific cytokines and antibody responses were monitored in mammary gland secretions and sera for the next 21 days. Infusion of rbIL-1beta into mammary glands at commencement of the dry period was associated with less new S. uberis intramammary infections, as determined by the number of quarters with bacterial growth. However, high SCC in quarters following infusion of rbIL-1beta masked the full beneficial effect of this procedure.


Assuntos
Interleucina-1beta/farmacologia , Glândulas Mamárias Animais/efeitos dos fármacos , Mastite Bovina/induzido quimicamente , Infecções Estreptocócicas/veterinária , Streptococcus/efeitos dos fármacos , Animais , Bovinos , Feminino , Interleucina-1beta/administração & dosagem , Interleucina-1beta/efeitos adversos , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/patologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/farmacologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Streptococcus/crescimento & desenvolvimento , Fatores de Tempo
15.
Vet Immunol Immunopathol ; 118(1-2): 50-8, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17524495

RESUMO

A number of studies have demonstrated significant protection of cattle against bovine tuberculosis following vaccination with the Pasteur strain of Mycobacterium bovis bacille Calmete-Guerin (BCG). However, it is unclear if other daughter strains of BCG are as effective, which is an important issue to resolve for a variety of regulatory compliance issues. This study compared the protective immune responses to bovine tuberculosis induced in cattle vaccinated with BCG Danish with those induced by BCG Pasteur. Groups of calves (n=10) were vaccinated with 10(6) colony forming units (CFU) BCG Pasteur prepared from a fresh liquid culture, 10(6) CFU BCG Danish prepared from a fresh liquid culture or 0.4 mg of reconstituted freeze-dried culture of BCG Danish. Another group (n=10) served as non-vaccinated controls. BCG Pasteur induced significantly higher and more sustained levels of bovine purified protein derivative (PPD)-specific gamma interferon (IFN-gamma) in whole-blood cultures following vaccination compared to either fresh culture BCG Danish or freeze-dried BCG Danish. Vaccination with a fresh culture of BCG Pasteur, fresh culture BCG Danish and freeze-dried BCG Danish gave a significant enhancement in three, four and three pathological and microbiological parameters of protection, respectively, compared to the non-vaccinated group. These results demonstrate the Danish strain of BCG is a viable alternative to BCG Pasteur for vaccination of cattle as both strains had similar efficacy and there was little difference between freshly cultured and freeze-dried formulation of BCG Danish. The results also show that post-vaccination antigen-specific IFN-gamma levels in whole blood is not always a reliable indicator of protection against a subsequent virulent challenge.


Assuntos
Vacina BCG/imunologia , Interferon gama/sangue , Mycobacterium bovis/classificação , Mycobacterium bovis/imunologia , Tuberculose Bovina/imunologia , Tuberculose Bovina/prevenção & controle , Animais , Bovinos , Feminino , Liofilização , Interferon gama/imunologia , Testes Cutâneos/veterinária
16.
Sci Rep ; 7: 41607, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28150705

RESUMO

Many bacterial pathogens naturally form cellular inclusions. Here the immunogenicity of polyhydroxyalkanoate (PHA) inclusions and their use as particulate vaccines delivering a range of host derived antigens was assessed. Our study showed that PHA inclusions of pathogenic Pseudomonas aeruginosa are immunogenic mediating a specific cell-mediated immune response. Protein engineering of the PHA inclusion forming enzyme by translational fusion of epitopes from vaccine candidates outer membrane proteins OprI, OprF, and AlgE mediated self-assembly of PHA inclusions coated by these selected antigens. Mice vaccinated with isolated PHA inclusions produced a Th1 type immune response characterized by antigen-specific production of IFN-γ and IgG2c isotype antibodies. This cell-mediated immune response was found to be associated with the production of functional antibodies reacting with cells of various P. aeruginosa strains as well as facilitating opsonophagocytic killing. This study showed that cellular inclusions of pathogenic bacteria are immunogenic and can be engineered to display selected antigens suitable to serve as particulate subunit vaccines against infectious diseases.


Assuntos
Bactérias/genética , Bactérias/imunologia , Infecções Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Bioengenharia , Imunidade Celular , Animais , Anticorpos Antibacterianos/imunologia , Formação de Anticorpos/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Infecções Bacterianas/prevenção & controle , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Citocinas/biossíntese , Epitopos/imunologia , Engenharia Genética , Humanos , Imunização , Camundongos , Mutação , Pseudomonas aeruginosa/imunologia , Fluxo de Trabalho
17.
Microb Biotechnol ; 10(6): 1434-1440, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28714174

RESUMO

In 2015, there were an estimated 10.4 million new tuberculosis (TB) cases and 1.4 million deaths worldwide. Bacille Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis, is the vaccine available against TB, but it is insufficient for global TB control. This study evaluated the immunogenicity of the Mycobacterium tuberculosis antigen Rv1626 in mice while assessing the effect of co-delivering either Cpe30 (immunostimulatory peptide), CS.T3378-395 (promiscuous T helper epitope) or flagellin (TLR5 agonist) or a combination of all three immunostimulatory agents. Rv1626 and the respective immunostimulatory proteins/peptides were co-displayed on polyhydroxybutyrate beads assembled inside an engineered endotoxin-free mutant of Escherichia coli. Mice vaccinated with these beads produced immune responses biased towards Th1-/Th17-type responses, but inclusion of Cpe30, CS.T3378-395 and flagellin did not enhance immunogenicity of the Rv1626 protein. This was confirmed in a M. bovis challenge experiment in mice, where Rv1626 beads reduced bacterial cell counts in the lungs by 0.48 log10 compared with the adjuvant alone control group. Co-delivery of immunostimulatory peptides did not further enhance protective immunity.


Assuntos
Antígenos de Bactérias/imunologia , Hidroxibutiratos/metabolismo , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Expressão Gênica , Humanos , Hidroxibutiratos/química , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Células Th1/imunologia , Células Th17/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/genética
18.
ACS Biomater Sci Eng ; 3(12): 3043-3057, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33445349

RESUMO

Polyhydroxyalkanoates (PHAs) are biological polyesters that can be naturally produced by a range of bacteria as water-insoluble inclusions composed of a PHA core coated with PHA synthesis, structural, and regulatory proteins. These naturally self-assembling shell-core particles have been recently conceived as biomaterials that can be bioengineered as biologically active beads for medical applications. Protein engineering of PHA-associated proteins enabled the production of PHA-protein assemblies exhibiting biologically active protein-based functions relevant for applications as vaccines or diagnostics. Here we provide an overview of the recent advances in bioengineering of PHA particles toward the display of biomedically relevant protein functions such as selected disease-specific antigens as diagnostic tools or for the design of particulate subunit vaccines against infectious diseases such as tuberculosis, meningitis, pneumonia, and hepatitis C.

19.
Vet Immunol Immunopathol ; 114(1-2): 111-20, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16949677

RESUMO

The aim of this study was to compare the ability of milk macrophages and macrophages from the mammary gland secretions during the mid-dry period for their interaction with the mastitis-causing Streptococcus uberis. We also aimed to determine if S. uberis induced the release of the cytokine tumour necrosis alpha (TNF-alpha) and the bactericidal moiety nitric oxide (NO) from milk macrophages of lactating cows and macrophages from the mammary gland secretions at the mid-dry period. Macrophages were isolated from the mammary gland secretions of cows during the mid-lactation or mid-dry period, and compared with blood monocytes for their interaction with the important mastitis-causing pathogen S. uberis. When infected in vitro with S. uberis, milk macrophages from lactating cows with S. uberis released modest amounts of the cytokine tumour necrosis factor alpha (TNF-alpha) (139 pg/ml) and the bactericidal moiety nitric oxide (NO) (3-4 microM of nitrite). Blood monocytes from lactating cows released significantly higher amounts of TNF-alpha (345 +/- 143 pg/ml) and NO (7 +/- 2 microM of nitrite) after interaction with S. uberis, compared to milk macrophages (P < 0.01 for both TNF-alpha and NO). Stimulation of blood monocytes with the cytokine interferon-gamma (IFN-gamma) enhanced significantly the release of NO and TNF-alpha, but IFN-gamma did not significantly enhance the production of NO and TNF-alpha by milk macrophages from lactating cows. Milk macrophages from all lactating cows failed to kill S. uberis efficiently, and this lack of killing was unaffected by prior treatment with gamma interferon (IFN-gamma) (P > 0.05). Rather, S. uberis multiplied significantly inside infected milk macrophages from lactating cows, with a two-fold increase in bacterial numbers at 2 h post-infection. Milk macrophages from lactating cows were able however, to kill a significant proportion (50-60%, P < 0.01) of phagocytosed Staphylococcus aureus. Blood monocytes from all cows were found to exert significant bactericidal activity against S. uberis. There were no significant differences in the bactericidal activity of milk macrophages obtained from lactating cows with low somatic cell counts (SCC; < 10(5) ml(-1)) compared with those with a mildly elevated SCC (> 10(5) ml(-1)) (P > 0.05). In contrast, mammary gland secretion macrophages isolated from the same cows in the mid-dry period killed a significant proportion of phagocytosed S. uberis (50-65% of ingested S. uberis killed, P < 0.01) although cytokine production in response to in vitro bacterial infection was low. We conclude that the bactericidal activity of mammary gland secretion macrophages against a virulent strain of S. uberis is low during the lactation period. In addition, our data indicate that S. uberis is not a strong inducer of NO and TNF-alpha in macrophages from the milk or mammary gland secretions of cows during the drying off period. Finally, IFN-gamma does not activate milk macrophages or macrophages from cows during the lactating period or mammary gland secretions during the drying off period.


Assuntos
Lactação/imunologia , Macrófagos/imunologia , Mastite Bovina/imunologia , Mastite Bovina/microbiologia , Leite/imunologia , Infecções Estafilocócicas/veterinária , Staphylococcus/imunologia , Animais , Bovinos , Inibidores Enzimáticos/farmacologia , Feminino , Técnicas In Vitro , Macrófagos/microbiologia , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/metabolismo , Mastite Bovina/metabolismo , Leite/microbiologia , Óxido Nítrico/imunologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Fator de Necrose Tumoral alfa/imunologia , ômega-N-Metilarginina/farmacologia
20.
PLoS One ; 11(7): e0159861, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27472482

RESUMO

Methane is produced in the rumen of ruminant livestock by methanogens and is a major contributor to agricultural greenhouse gases. Vaccination against ruminal methanogens could reduce methane emissions by inducing antibodies in saliva which enter the rumen and impair ability of methanogens to produce methane. Presently, it is not known if vaccination can induce sufficient amounts of antibody in the saliva to target methanogen populations in the rumen and little is known about how long antibody in the rumen remains active. In the current study, sheep were vaccinated twice at a 3-week interval with a model methanogen antigen, recombinant glycosyl transferase protein (rGT2) formulated with one of four adjuvants: saponin, Montanide ISA61, a chitosan thermogel, or a lipid nanoparticle/cationic liposome adjuvant (n = 6/formulation). A control group of sheep (n = 6) was not vaccinated. The highest antigen-specific IgA and IgG responses in both saliva and serum were observed with Montanide ISA61, which promoted levels of salivary antibodies that were five-fold higher than the second most potent adjuvant, saponin. A rGT2-specific IgG standard was used to determine the level of rGT2-specific IgG in serum and saliva. Vaccination with GT2/Montanide ISA61 produced a peak antibody concentration of 7 × 1016 molecules of antigen-specific IgG per litre of saliva, and it was estimated that in the rumen there would be more than 104 molecules of antigen-specific IgG for each methanogen cell. Both IgG and IgA in saliva were shown to be relatively stable in the rumen. Salivary antibody exposed for 1-2 hours to an in vitro simulated rumen environment retained approximately 50% of antigen-binding activity. Collectively, the results from measuring antibody levels and stablility suggest a vaccination-based mitigation strategy for livestock generated methane is in theory feasible.


Assuntos
Anticorpos/análise , Proteínas Arqueais/administração & dosagem , Rúmen/microbiologia , Saliva/imunologia , Carneiro Doméstico/imunologia , Vacinação/métodos , Animais , Anticorpos/imunologia , Antígenos/imunologia , Archaea/isolamento & purificação , Proteínas Arqueais/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Imunoglobulina A/análise , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/análise , Imunoglobulina G/sangue , Imunoglobulina G/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA