Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
PLoS Pathog ; 15(2): e1007564, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30817809

RESUMO

There are a number of vaccine candidates under development against a small number of the most common outbreak filoviruses all employing the virus glycoprotein (GP) as the vaccine immunogen. However, antibodies induced by such GP vaccines are typically autologous and limited to the other members of the same species. In contrast, T-cell vaccines offer a possibility to design a single pan-filovirus vaccine protecting against all known and even likely existing, but as yet unencountered members of the family. Here, we used a cross-filovirus immunogen based on conserved regions of the filovirus nucleoprotein, matrix and polymerase to construct simian adenovirus- and poxvirus MVA-vectored vaccines, and in a proof-of-concept study demonstrated a protection of the BALB/c and C57BL/6J mice against high, lethal challenges with Ebola and Marburg viruses, two distant members of the family, by vaccine-elicited T cells in the absence of GP antibodies.


Assuntos
Filoviridae/imunologia , Linfócitos T/imunologia , Vacinas Virais/farmacologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra Ebola , Ebolavirus/patogenicidade , Feminino , Filoviridae/metabolismo , Filoviridae/patogenicidade , Doença pelo Vírus Ebola , Imunidade Celular/imunologia , Masculino , Marburgvirus/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estudo de Prova de Conceito , Linfócitos T/metabolismo
2.
Mol Ther ; 25(2): 494-503, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28153096

RESUMO

To be effective against HIV type 1 (HIV-1), vaccine-induced T cells must selectively target epitopes, which are functionally conserved (present in the majority of currently circulating and reactivated HIV-1 strains) and, at the same time, beneficial (responses to which are associated with better clinical status and control of HIV-1 replication), and rapidly reach protective frequencies upon exposure to the virus. Heterologous prime-boost regimens using virally vectored vaccines are currently the most promising vaccine strategies; nevertheless, induction of robust long-term memory remains challenging. To this end, lentiviral vectors induce high frequencies of memory cells due to their low-inflammatory nature, while typically inducing only low anti-vector immune responses. Here, we describe construction of novel candidate vaccines ZVex.tHIVconsv1 and ZVex.tHIVconsv2, which are based on an integration-deficient lentiviral vector platform with preferential transduction of human dendritic cells and express a bivalent mosaic of conserved-region T cell immunogens with a high global HIV-1 match. Each of the two mosaic vaccines was individually immunogenic. When administered together in heterologous prime-boost regimens with chimpanzee adenovirus and/or poxvirus modified vaccinia virus Ankara (MVA) vaccines to BALB/c and outbred CD1-Swiss mice, they induced a median frequency of over 6,000 T cells/106 splenocytes, which were plurifunctional, broadly specific, and cross-reactive. These results support further development of this vaccine concept.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Vetores Genéticos/genética , Infecções por HIV/imunologia , HIV-1/genética , HIV-1/imunologia , Lentivirus/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Animais , Sequência Conservada , Modelos Animais de Doenças , Epitopos/genética , Epitopos/imunologia , Feminino , Ordem dos Genes , Infecções por HIV/virologia , Humanos , Imunidade Celular , Camundongos , Peptídeos/genética , Peptídeos/imunologia
3.
Mol Ther ; 24(4): 832-42, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26743582

RESUMO

An effective human immunodeficiency virus type 1 (HIV-1) vaccine is the best solution for halting the acquired immune deficiency syndrome epidemic. Here, we describe the design and preclinical immunogenicity of T-cell vaccine expressing novel immunogens tHIVconsvX, vectored by DNA, simian (chimpanzee) adenovirus, and poxvirus modified vaccinia virus Ankara (MVA), a combination highly immunogenic in humans. The tHIVconsvX immunogens combine the three leading strategies for elicitation of effective CD8(+) T cells: use of regions of HIV-1 proteins functionally conserved across all M group viruses (to make HIV-1 escape costly on viral fitness), inclusion of bivalent complementary mosaic immunogens (to maximize global epitope matching and breadth of responses, and block common escape paths), and inclusion of epitopes known to be associated with low viral load in infected untreated people (to induce field-proven protective responses). tHIVconsvX was highly immunogenic in two strains of mice. Furthermore, the magnitude and breadth of CD8(+) T-cell responses to tHIVconsvX-derived peptides in treatment-naive HIV-1(+) patients significantly correlated with high CD4(+) T-cell count and low viral load. Overall, the tHIVconsvX design, combining the mosaic and conserved-region approaches, provides an indisputably better coverage of global HIV-1 variants than previous T-cell vaccines. These immunogens delivered in a highly immunogenic framework of adenovirus prime and MVA boost are ready for clinical development.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Infecções por HIV/terapia , Adenovirus dos Símios/imunologia , Animais , Contagem de Linfócito CD4 , HIV-1/fisiologia , Células HeLa , Humanos , Camundongos , Vaccinia virus/imunologia , Carga Viral
4.
Vaccines (Basel) ; 12(9)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39339997

RESUMO

During the COVID-19 pandemic, antibody-based vaccines targeting the SARS-CoV-2 spike glycoprotein were the focus for development because neutralizing antibodies were associated with protection against the SARS-CoV-2 infection pre-clinically and in humans. While deploying these spike-based vaccines saved millions of lives worldwide, it has become clear that the immunological mechanisms of protection against severe disease are multifaceted and involve non-neutralizing antibody components. Here, we describe a novel pan-sarbecovirus T-cell vaccine, ChAdOx1.COVconsv12, designed to complement and broaden the protection of spike vaccines. The vaccine immunogen COVconsv12 employs the two regions in the viral proteome most conserved among sarbecoviruses, which are delivered by replication-deficient vector ChAdOx1. It directs T cells towards epitopes shared among sarbecoviruses including evolving SARS-CoV-2 variants. Here, we show that ChAdOx1.COVconsv12 induced broad T-cell responses in the BALB/c and C57BL/6 mice. In the Syrian hamster challenge model, ChAdOx1.COVconsv12 alone did not protect against the SARS-CoV-2 infection, but when co-administered with 1/50th of the ChAdOx1 nCoV-19 spike vaccine protective dose, faster recovery and lower oral swab viral load were observed. Induction of CD8+ T cells may decrease COVID-19 severity and extend the T-cell response coverage of variants to match the known (and as yet unknown) members of the ß-coronavirus family.

5.
NPJ Vaccines ; 9(1): 74, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582771

RESUMO

Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.

6.
Vaccines (Basel) ; 11(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37515003

RESUMO

We develop candidate HIV-1 vaccines, of which two components, ChAdOx1.tHIVconsv1 (C1) and ChAdOx1.HIVconsv62 (C62), are delivered by the simian adenovirus-derived vaccine vector ChAdOx1. Aberrant adenovirus RNA splicing involving transgene(s) coding for the SARS-CoV-2 spike was suggested as an aetiology of rare adverse events temporarily associated with the initial deployment of adenovirus-vectored vaccines during the COVID-19 pandemic. Here, to eliminate this theoretically plausible splicing phenomenon from the list of possible pathomechanisms for our HIV-1 vaccine candidates, we directly sequenced mRNAs in C1- and C62-infected nonpermissive MRC-5 and A549 and permissive HEK293 human cell lines. Our two main observations in nonpermissive human cells, which are most similar to those which become infected after the intramuscular administration of vaccines into human volunteers, were that (i) the dominant adenovirus vector-derived mRNAs were the expected transcripts coding for the HIVconsvX immunogens and (ii) atypical splicing events within the synthetic open reading frame of the two transgenes are rare. We conclude that inadvertent RNA splicing is not a safety concern for the two tested candidate HIV-1 vaccines.

7.
Front Immunol ; 14: 1186478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529048

RESUMO

Introduction: The primary goal of this work is to broaden and enhance the options for induction of protective CD8+ T cells against HIV-1 and respiratory pathogens. Methods: We explored the advantages of the parainfluenza virus 5 (PIV5) vector for delivery of pathogen-derived transgenes alone and in combination with the in-human potent regimen of simian adenovirus ChAdOx1 prime-poxvirus MVA boost delivering bi-valent mosaic of HIV-1 conserved regions designated HIVconsvX. Results: We showed in BALB/c mice that the PIV5 vector expressing the HIVconsvX immunogens could be readily incorporated with the other two vaccine modalities into a single regimen and that for specific vector combinations, mucosal CD8+ T-cell induction was enhanced synergistically by a combination of the intranasal and intramuscular routes of administration. Discussion: Encouraging safety and immunogenicity data from phase 1 human trials of ChAdOx1- and MVA-vectored vaccines for HIV-1, and PIV5-vectored vaccines for SARS-CoV-2 and respiratory syncytial virus pave the way for combining these vectors for HIV-1 and other indications in humans.


Assuntos
Adenovirus dos Símios , COVID-19 , HIV-1 , Vírus Sincicial Respiratório Humano , Camundongos , Animais , Humanos , Adenovirus dos Símios/genética , Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , SARS-CoV-2
9.
Vaccines (Basel) ; 10(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746566

RESUMO

In this study, we invented and construct novel candidate HIV-1 vaccines. Through genetic and protein engineering, we unknowingly constructed an HIV-1-derived transgene with a homopolymeric run of 11 cytidines, which was inserted into an adenovirus vaccine vector. Here, we describe the virus rescue, three rounds of clonal purification and preparation of good manufacturing practise (GMP) starting material assessed for genetic stability in five additional virus passages. Throughout these steps, quality control assays indicated the presence of the transgene in the virus genome, expression of the correct transgene product and immunogenicity in mice. However, DNA sequencing of the transgene revealed additional cytidines inserted into the original 11-cytidine region, and the GMP manufacture had to be aborted. Subsequent analyses indicated that as little as 1/25th of the virus dose used for confirmation of protein expression (106 cells at a multiplicity of infection of 10) and murine immunogenicity (108 infectious units per animal) met the quality acceptance criteria. Similar frameshifts in the expressed proteins were reproduced in a one-reaction in vitro transcription/translation employing phage T7 polymerase and E. coli ribosomes. Thus, the most likely mechanism for addition of extra cytidines into the ChAdOx1.tHIVconsv6 genome is that the adenovirus DNA polymerase lost its fidelity on a stretch of 11 cytidines, which informs future adenovirus vaccine designs.

11.
Nat Med ; 28(12): 2611-2621, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36302893

RESUMO

HIVACAT T-cell immunogen (HTI) is a novel human immunodeficiency virus (HIV) vaccine immunogen designed to elicit cellular immune responses to HIV targets associated with viral control in humans. The AELIX-002 trial was a randomized, placebo-controlled trial to evaluate as a primary objective the safety of a combination of DNA.HTI (D), MVA.HTI (M) and ChAdOx1.HTI (C) vaccines in 45 early-antiretroviral (ART)-treated individuals (44 men, 1 woman; NCT03204617). Secondary objectives included T-cell immunogenicity, the effect on viral rebound and the safety of an antiretroviral treatment interruption (ATI). Adverse events were mostly mild and transient. No related serious adverse events were observed. We show here that HTI vaccines were able to induce strong, polyfunctional and broad CD4 and CD8 T-cell responses. All participants experienced detectable viral rebound during ATI, and resumed ART when plasma HIV-1 viral load reached either >100,000 copies ml-1, >10,000 copies ml-1 for eight consecutive weeks, or after 24 weeks of ATI. In post-hoc analyses, HTI vaccines were associated with a prolonged time off ART in vaccinees without beneficial HLA (human leukocyte antigen) class I alleles. Plasma viral load at the end of ATI and time off ART positively correlated with vaccine-induced HTI-specific T-cell responses at ART cessation. Despite limited efficacy of the vaccines in preventing viral rebound, their ability to elicit robust T-cell responses towards HTI may be beneficial in combination cure strategies, which are currently being tested in clinical trials.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Vacinas , Masculino , Feminino , Humanos , Linfócitos T CD8-Positivos , Antirretrovirais/uso terapêutico , Vacinas/uso terapêutico , Antígenos de Histocompatibilidade Classe I , Carga Viral , Linfócitos T CD4-Positivos
12.
Mol Ther Methods Clin Dev ; 21: 741-753, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34169114

RESUMO

To stop the HIV-1 pandemic, vaccines must induce responses capable of controlling vast HIV-1 variants circulating in the population as well as those evolved in each individual following transmission. Numerous strategies have been proposed, of which the most promising include focusing responses on the vulnerable sites of HIV-1 displaying the least entropy among global isolates and using algorithms that maximize vaccine match to circulating HIV-1 variants by vaccine cocktails of optimized complementing sequences. In this study, we investigated CD8 T cell responses induced by a bi-valent mosaic of highly conserved HIVconsvX regions delivered by a combination of simian adenovirus ChAdOx1 and poxvirus MVA. We compared partially and fully mono- and bi-valent prime-boost regimens and their ability to elicit T cells recognizing natural epitope variants using an interferon-γ enzyme-linked immunospot (ELISPOT) assay. We used 11 well-defined CD8 T cell epitopes in two mouse haplotypes and, for each epitope, assessed recognition of the two vaccine forms together with the other most frequent epitope variants in the HIV-1 database. We conclude that for the magnitude and depth of epitope recognition, CD8 T cell responses benefitted in most comparisons from the combined bi-valent mosaic and envisage the main advantage of the bi-valent vaccine during its deployment to diverse populations.

13.
Vaccines (Basel) ; 8(3)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640600

RESUMO

A vaccine will likely be one of the key tools for ending the HIV-1/AIDS epidemic by preventing HIV-1 spread within uninfected populations and achieving a cure for people living with HIV-1. The currently prevailing view of the vaccine field is to introduce protective antibodies, nevertheless, a vaccine to be effective may need to harness protective T cells. We postulated that focusing a T-cell response on the most vulnerable regions of the HIV-1 proteome while maximizing a perfect match between the vaccine and circulating viruses will control HIV-1 replication. We currently use a combination of replication-deficient simian (chimpanzee) adenovirus and poxvirus modified vaccinia virus Ankara to deliver bivalent conserved-mosaic immunogens to human volunteers. Here, we exploit the mRNA platform by designing tetravalent immunogens designated as HIVconsvM, and demonstrate that mRNA formulated in lipid nanoparticles induces potent, broad and polyfunctional T-cell responses in a pre-clinical model. These results support optimization and further development of this vaccine strategy in experimental medicine trials in humans.

15.
Front Immunol ; 11: 823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435247

RESUMO

Kick&kill strategies combining drugs aiming to reactivate the viral reservoir with therapeutic vaccines to induce effective cytotoxic immune responses hold potential to achieve a functional cure for HIV-1 infection. Here, we report on an open-label, single-arm, phase I clinical trial, enrolling 15 early-treated HIV-1-infected individuals, testing the combination of the histone deacetylase inhibitor romidepsin as a latency-reversing agent and the MVA.HIVconsv vaccine. Romidepsin treatment resulted in increased histone acetylation, cell-associated HIV-1 RNA, and T-cell activation, which were associated with a marginally significant reduction of the viral reservoir. Vaccinations boosted robust and broad HIVconsv-specific T cells, which were strongly refocused toward conserved regions of the HIV-1 proteome. During a monitored ART interruption phase using plasma viral load over 2,000 copies/ml as a criterium for ART resumption, 23% of individuals showed sustained suppression of viremia up to 32 weeks without evidence for reseeding the viral reservoir. Results from this pilot study show that the combined kick&kill intervention was safe and suggest a role for this strategy in achieving an immune-driven durable viremic control.


Assuntos
Vacinas contra a AIDS/imunologia , Antivirais/uso terapêutico , Depsipeptídeos/uso terapêutico , Infecções por HIV/imunologia , HIV-1/fisiologia , Inibidores de Histona Desacetilases/uso terapêutico , Adulto , Reservatórios de Doenças , Quimioterapia Combinada , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Carga Viral , Viremia , Latência Viral
16.
Front Immunol ; 10: 923, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156614

RESUMO

BCG is currently the only licensed vaccine against tuberculosis (TB) and confers protection against meningitis and miliary tuberculosis in infants, although pulmonary disease protection in adults is inconsistent. Recently, promising HIV-1 immunogens were developed, such as the T-cell immunogens "tHIVconsvX," designed using functionally conserved protein regions across group M strains, with mosaic immunogens to improve HIV-1 variant match and response breadth. In this study, we constructed an integrative E. coli-mycobacterial shuttle plasmid, p2auxo.HIVconsvXint, expressing the immunogens HIVconsv1&2. This expression vector used an antibiotic resistance-free mechanism for plasmid selection and maintenance. It was first transformed into a glycine auxotrophic E. coli strain and subsequently transformed into a lysine auxotrophic Mycobacterium bovis BCG strain to generate vaccines BCG.HIVconsv12auxo.int and BCG.HIVconsv22auxo.int. The DNA sequence coding for the HIVconsv1&2 immunogens and protein expression were confirmed and working vaccine stocks were genetically and phenotypically characterized. We demonstrated that BCG.HIVconsv1&22auxo.int in combination with ChAdOx1.tHIVconsv5&6 were well tolerated and induced HIV-1-specific T-cell responses in adult BALB/c mice. In addition, we showed that the BCG.HIVconsv1&22auxo.int vaccine strains were stable in vitro after 35 bacterial generations and in vivo 7 weeks after inoculation. The use of integrative expression vectors and novel HIV-1 immunogens are likely to have improved the mycobacterial vaccine stability and specific immunogenicity and may enable the development of a useful vaccine platform for priming protective responses against HIV-1/TB and other prevalent pediatric pathogens shortly following birth.


Assuntos
Vacinas contra a AIDS/imunologia , Vacina BCG/imunologia , HIV-1/imunologia , Linfócitos T/imunologia , Vacinas Sintéticas/imunologia , Animais , Antígenos Virais/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Vivas não Atenuadas/imunologia
17.
Mol Ther Methods Clin Dev ; 12: 32-46, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30547051

RESUMO

Focusing T cell responses on the most vulnerable parts of HIV-1, the functionally conserved regions of HIV-1 proteins, is likely a key prerequisite for vaccine success. For a T cell vaccine to efficiently control HIV-1 replication, the vaccine-elicited individual CD8+ T cells and as a population have to display a number of critical traits. If any one of these traits is suboptimal, the vaccine is likely to fail. Fine-tuning of individual protective characteristics of T cells will require iterative stepwise improvements in clinical trials. Although the second-generation tHIVconsvX immunogens direct CD8+ T cells to predominantly protective and conserved epitopes, in the present work, we have used formulated self-amplifying mRNA (saRNA) to deliver tHIVconsvX to the immune system. We demonstrated in BALB/c and outbred mice that regimens employing saRNA vaccines induced broadly specific, plurifunctional CD8+ and CD4+ T cells, which displayed structured memory subpopulations and were maintained at relatively high frequencies over at least 22 weeks post-administration. This is one of the first thorough analyses of mRNA vaccine-elicited T cell responses. The combination of tHIVconsvX immunogens and the highly versatile and easily manufacturable saRNA platform may provide a long-awaited opportunity to define and optimize induction of truly protective CD8+ T cell parameters in human volunteers.

18.
Mol Ther Methods Clin Dev ; 14: 148-160, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31367651

RESUMO

The aim of this work was to start collecting information on rational combination of antibody (Ab) and T cell vaccines into single regimens. Two promising candidate HIV-1 vaccine strategies, sequential isolates of CH505 virus Envs developed for initiation of broadly neutralizing antibody lineages and conserved-mosaic tHIVconsvX immunogens aiming to induce effective cross-clade T cell responses, were combined to assess vaccine interactions. These immunogens were delivered in heterologous vector/modality regimens consisting of non-replicating simian (chimpanzee) adenovirus ChAdOx1 (C), non-replicating poxvirus MVA (M), and adjuvanted protein (P). Outbred CD1-SWISS mice were vaccinated intramuscularly using either parallel CM8M (tHIVconsvX)/CPPP (CH505) or sequential CM16M (tHIVconsvX)/CPPP (CH505) protocols, the latter of which delivered T cell CM prior to the CH505 Env. CM8M (tHIVconsvX) and CPPP or CMMP (CH505) vaccinations alone were included as comparators. The vaccine-elicited HIV-1-specific trimer-binding and neutralizing Abs and CD8+/CD4+ T cell responses induced by the combined and comparator regimens were not statistically separable among regimens. The Ab-lineage immunogen strategy was particularly suited for combined regimens for its likely less potent induction of Env-specific T cell responses relative to homologous epitope-based vaccine strategies. These results inform design of the first rationally combined Ab and T cell vaccine regimens in human volunteers.

19.
EClinicalMedicine ; 11: 65-80, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312806

RESUMO

BACKGROUND: Strong and broad antiviral T-cell responses targeting vulnerable sites of HIV-1 will likely be a critical component for any effective cure strategy. METHODS: BCN01 trial was a phase I, open-label, non-randomized, multicenter study in HIV-1-positive individuals diagnosed and treated during early HIV-1 infection to evaluate two vaccination regimen arms, which differed in the time (8 versus 24 week) between the ChAdV63.HIVconsv prime and MVA.HIVconsv boost vaccinations. The primary outcome was safety. Secondary endpoints included frequencies of vaccine-induced IFN-γ+ CD8+ T cells, in vitro virus-inhibitory capacity, plasma HIV-1 RNA and total CD4+ T-cells associated HIV-1 DNA. (NCT01712425). FINDINGS: No differences in safety, peak magnitude or durability of vaccine-induced responses were observed between long and short interval vaccination arms. Grade 1/2 local and systemic post-vaccination events occurred in 22/24 individuals and resolved within 3 days. Weak responses to conserved HIV-1 regions were detected in 50% of the individuals before cART initiation, representing median of less than 10% of their total HIV-1-specific T cells. All participants significantly elevated these subdominant T-cell responses, which after MVA.HIVconsv peaked at median (range) of 938 (73-6,805) IFN-γ SFU/106 PBMC, representing on average 58% of their total anti-HIV-1 T cells. The decay in the size of the HIV-1 reservoir was consistent with the first year of early cART initiation in both arms. INTERPRETATION: Heterologous prime-boost vaccination with ChAdV63-MVA/HIVconsv was well-tolerated and refocused pre-cART T-cell responses towards more protective epitopes, in which immune escape is frequently associated with reduced HIV-1 replicative fitness and which are common to most global HIV-1 variants. FUNDING: HIVACAT Catalan research program for an HIV vaccine and Fundació Gloria Soler. Vaccine manufacture was jointly funded by the Medical Research Council (MRC) UK and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreements (G0701669. RESEARCH IN CONTEXT: Evidence Before this Study: T cells play an important role in the control of HIV infection and may be particularly useful for HIV-1 cure by killing cells with reactivated HIV-1. Evidence is emerging that not all T-cell responses are protective and mainly only those targeting conserved regions of HIV-1 proteins are effective, but typically immunologically subdominant, while those recognizing hypervariable, easy-to-escape immunodominant 'decoys' do not control viremia and do not protect from a loss of CD4 T cells. We pioneered a vaccine strategy focusing T-cell responses on the most conserved regions of the HIV-1 proteome using an immunogen designated HIVconsv. T cells elicited by the HIVconsv vaccines in HIV-uninfected UK and Kenyan adults inhibited in vitro replication of HIV-1 isolates from 4 major global clades A, B, C and D.Added Value of this Study: The present study demonstrated the concept that epitopes subdominant in natural infection, when taken out of the context of the whole HIV-1 proteome and presented to the immune system by a potent simian adenovirus prime-poxvirus MVA boost regimen, can induce strong responses in patients on antiretroviral treatment and efficiently refocus HIV-1-specific T-cells to the protective epitopes delivered by the vaccine.Implications of all the Available Evidence: Nearly all HIV-1 vaccine strategies currently emphasize induction of broadly neutralizing Abs. The HIVconsv vaccine is one of a very few approaches focussing exclusively on elicitation of T cells and, therefore, can complement antibody induction for better prevention and cure. Given the cross-clade reach on the HIVconsv immunogen design, if efficient, the HIVconsv vaccines could be deployed globally. Effective vaccines will likely be a necessary component in combination with other available preventive measures for halting the HIV-1/AIDS epidemic.

20.
PLoS One ; 13(5): e0197299, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29772028

RESUMO

BACKGROUND: The failure of DNA vaccination in humans, in contrast to its efficacy in some species, is unexplained. Observational and interventional experimental evidence suggests that DNA immunogenicity may be prevented by binding of human serum amyloid P component (SAP). SAP is the single normal DNA binding protein in human plasma. The drug (R)-1-[6-[(R)-2-carboxypyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC, miridesap), developed for treatment of systemic amyloidosis and Alzheimer's disease, depletes circulating SAP by 95-99%. The proof-of-concept HIV-CORE 003 clinical trial tested whether SAP depletion by CPHPC would enhance the immune response in human volunteers to DNA vaccination delivering the HIVconsv immunogen derived from conserved sub-protein regions of HIV-1. METHODS: Human volunteers received 3 intramuscular immunizations with an experimental DNA vaccine (DDD) expressing HIV-1-derived immunogen HIVconsv, with or without prior depletion of SAP by CPHPC. All subjects were subsequently boosted by simian (chimpanzee) adenovirus (C)- and poxvirus MVA (M)-vectored vaccines delivering the same immunogen. After administration of each vaccine modality, the peak total magnitudes, kinetics, functionality and memory subsets of the T-cell responses to HIVconsv were thoroughly characterized. RESULTS: No differences were observed between the CPHPC treated and control groups in any of the multiple quantitative and qualitative parameters of the T-cell responses to HIVconsv, except that after SAP depletion, there was a statistically significantly greater breadth of T-cell specificities, that is the number of recognized epitopes, following the DDDC vaccination. CONCLUSIONS: The protocol used here for SAP depletion by CPHPC prior to DNA vaccination produced only a very modest suggestion of enhanced immunogenicity. Further studies will be required to determine whether SAP depletion might have a practical value in DNA vaccination for other plasmid backbones and/or immunogens. TRIAL REGISTRATION: Clinicaltrials.gov NCT02425241.


Assuntos
Vacinas contra a AIDS/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Componente Amiloide P Sérico/análise , Linfócitos T/imunologia , Vacinas de DNA/imunologia , Vacinas contra a AIDS/efeitos adversos , Adulto , Infecções por HIV/imunologia , Humanos , Imunogenicidade da Vacina , Injeções Intramusculares , Masculino , Estudo de Prova de Conceito , Vacinação , Vacinas de DNA/efeitos adversos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA