Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Open ; 13(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38180243

RESUMO

The 15th Network of Young Researchers in Andrology (NYRA) meeting, held at the Palace de Caux, Switzerland, served as a valuable platform to disseminate cutting-edge research and facilitate interactions among early-career researchers and trainees in andrology from around the world. Preceding the 22nd European Testis Workshop, the 2-day event brought together participants from a variety of countries to discuss a range of topics pertaining to men's reproductive health and biology. Specific focuses included piRNAs in mammalian reproduction, biomolecules enhancing sperm physiology, advances in in vitro spermatogenesis, reproductive strategies across species, and career development. A dedicated 'scientific speed-dating' social event also stood out, encouraging cross-disciplinary collaborations and strengthening ties within the scientific community. The high participation rate of the meeting highlighted its value in connecting the andrology community. Finally, the announcement of NYRA's merger with the European Academy of Andrology (EAA) marked a pivotal moment, enabling NYRA to support young researchers while collaborating with the EAA to advance andrology research. The 15th NYRA meeting played a crucial role in enhancing knowledge dissemination and andrology research, empowering young researchers, and addressing key challenges in male infertility.


Assuntos
Andrologia , Animais , Humanos , Masculino , Saúde Reprodutiva , Sêmen , Reprodução , Poder Psicológico , Mamíferos
2.
Elife ; 122024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441556

RESUMO

From a cohort of 167 infertile patients suffering from multiple morphological abnormalities of the flagellum (MMAF), pathogenic bi-allelic mutations were identified in the CCDC146 gene. In somatic cells, CCDC146 is located at the centrosome and at multiple microtubule-related organelles during mitotic division, suggesting that it is a microtubule-associated protein (MAP). To decipher the molecular pathogenesis of infertility associated with CCDC146 mutations, a Ccdc146 knock-out (KO) mouse line was created. KO male mice were infertile, and sperm exhibited a phenotype identical to CCDC146 mutated patients. CCDC146 expression starts during late spermiogenesis. In the spermatozoon, the protein is conserved but is not localized to centrioles, unlike in somatic cells, rather it is present in the axoneme at the level of microtubule doublets. Expansion microscopy associated with the use of the detergent sarkosyl to solubilize microtubule doublets suggests that the protein may be a microtubule inner protein (MIP). At the subcellular level, the absence of CCDC146 impacted all microtubule-based organelles such as the manchette, the head-tail coupling apparatus (HTCA), and the axoneme. Through this study, a new genetic cause of infertility and a new factor in the formation and/or structure of the sperm axoneme were characterized.


Assuntos
Anormalidades Múltiplas , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Centríolos , Infertilidade Masculina/genética , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Sêmen
3.
Open Res Eur ; 4: 68, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883262

RESUMO

The prevalence of hormone-related health issues caused by exposure to endocrine disrupting chemicals (EDCs) is a significant, and increasing, societal challenge. Declining fertility rates together with rising incidence rates of reproductive disorders and other endocrine-related diseases underscores the urgency in taking more action. Addressing the growing threat of EDCs in our environment demands robust and reliable test methods to assess a broad variety of endpoints relevant for endocrine disruption. EDCs also require effective regulatory frameworks, especially as the current move towards greater reliance on non-animal methods in chemical testing puts to test the current paradigm for EDC identification, which requires that an adverse effect is observed in an intact organism. Although great advances have been made in the field of predictive toxicology, disruption to the endocrine system and subsequent adverse health effects may prove particularly difficult to predict without traditional animal models. The MERLON project seeks to expedite progress by integrating multispecies molecular research, new approach methodologies (NAMs), human clinical epidemiology, and systems biology to furnish mechanistic insights and explore ways forward for NAM-based identification of EDCs. The focus is on sexual development and function, from foetal sex differentiation of the reproductive system through mini-puberty and puberty to sexual maturity. The project aims are geared towards closing existing knowledge gaps in understanding the effects of EDCs on human health to ultimately support effective regulation of EDCs in the European Union and beyond.

4.
Front Cell Dev Biol ; 11: 1221578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547474

RESUMO

The sperm-specific channel CatSper (cation channel of sperm) controls the intracellular Ca2+ concentration ([Ca2+]i) and plays an essential role in sperm function. It is mainly activated by the steroid progesterone (P4) but is also promiscuously activated by a wide range of synthetic and physiological compounds. These compounds include diverse steroids whose action on the channel is so far still controversial. To investigate the effect of these compounds on CatSper and sperm function, we developed a high-throughput screening (HTS) assay to measure changes in [Ca2+]i in human sperm and screened 1,280 approved and off-patent drugs including 90 steroids from the Prestwick chemical library. More than half of the steroids tested (53%) induced an increase in [Ca2+]i and reduced the P4-induced Ca2+ influx in human sperm in a dose-dependent manner. Ten of the most potent steroids (activating and P4-inhibiting) were selected for a detailed analysis of their action on CatSper and their ability to act on sperm acrosome reaction (AR) and penetration in viscous media. We found that these steroids show an inhibitory effect on P4 but not on prostaglandin E1-induced CatSper activation, suggesting that they compete for the same binding site as P4. Pregnenolone, dydrogesterone, epiandrosterone, nandrolone, and dehydroepiandrosterone acetate (DHEA) were found to activate CatSper at physiologically relevant concentrations within the nanomolar range. Like P4, most tested steroids did not significantly affect the AR while stanozolol and estropipate slightly increased sperm penetration into viscous medium. Furthermore, using a hybrid approach integrating pharmacophore analysis and statistical modelling, we were able to screen in silico for steroids that can activate the channel and define the physicochemical and structural properties required for a steroid to exhibit agonist activity against CatSper. Overall, our results indicate that not only physiological but also synthetic steroids can modulate the activity of CatSper with varying potency and if bound to CatSper prior to P4, could impair the timely CatSper activation necessary for proper fertilization to occur.

5.
Cells ; 11(1)2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-35011680

RESUMO

The genetic landscape of male infertility is highly complex. It is estimated that at least 4000 genes are involved in human spermatogenesis, but only few have so far been extensively studied. In this study, we investigated by whole exome sequencing two cases of idiopathic non-obstructive azoospermia (NOA) due to severe hypospermatogenesis. After variant filtering and prioritizing, we retained for each patient a homozygous loss-of-function (LoF) variant in a testis-specific gene, C1orf185 (c.250C>T; p.Gln84Ter) and CCT6B (c.615-2A>G), respectively. Both variants are rare according to the gnomAD database and absent from our local control cohort (n = 445). To verify the implication of these candidate genes in NOA, we used the CRISPR/Cas9 system to invalidate the mouse orthologs 4930522H14Rik and Cct6b and produced two knockout (KO) mouse lines. Sperm and testis parameters of homozygous KO adult male mice were analyzed and compared with those of wild-type animals. We showed that homozygous KO males were fertile and displayed normal sperm parameters and a functional spermatogenesis. Overall, these results demonstrate that not all genes highly and specifically expressed in the testes are essential for spermatogenesis, and in particular, we conclude that bi-allelic variants of C1orf185 and CCT6B are most likely not to be involved in NOA and male fertility.


Assuntos
Azoospermia/etiologia , Sistemas CRISPR-Cas/genética , Chaperonina com TCP-1/genética , Sequenciamento do Exoma/métodos , Testículo/metabolismo , Azoospermia/fisiopatologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA