Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 19(1): 308, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627267

RESUMO

In Asia, including Taiwan, malignant tumors such as Hepatocellular carcinoma (HCC) one of the liver cancer is the most diagnosed subtype. Magnetic resonance imaging (MRI) has been a typical diagnostic method for accurately diagnosing HCC. When it is difficult to demonstrate non-enhanced MRI of tumors, radiologists can use contrast agents (such as Gd3+, Fe3O4, or FePt) for T1-weighted and T2-weighted imaging remain in the liver for a long time to facilitate diagnosis via MRI. However, it is sometimes difficult for T2-weighted imaging to detect small tumor lesions because the liver tissue may absorb iron ions. This makes early cancer detection a challenging goal. This challenge has prompted current research to create novel nanocomposites for enhancing the noise-to-signal ratio of MRI. To develop a method that can more efficiently diagnose and simultaneously treat HCC during MRI examination, we designed a functionalized montmorillonite (MMT) material with a porous structure to benefit related drugs, such as mitoxantrone (MIT) delivery or as a carrier for the FePt nanoparticles (FePt NPs) to introduce cancer therapy. Multifunctional FePt@MMT can simultaneously visualize HCC by enhancing MRI signals, treating various diseases, and being used as an inducer of magnetic fluid hyperthermia (MFH). After loading the drug MIT, FePt@MMT-MIT provides both MFH treatment and chemotherapy in one nanosystem. These results ultimately prove that functionalized FePt@MMT-MIT could be integrated as a versatile drugs delivery system by combining with MRI, chemotheraeutic drugs, and magnetic guide targeting.


Assuntos
Carcinoma Hepatocelular , Portadores de Fármacos , Neoplasias Hepáticas , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita , Animais , Bentonita/química , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/toxicidade , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/metabolismo , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Masculino , Camundongos , Platina/química , Nanomedicina Teranóstica
2.
Nanotechnology ; 31(13): 134004, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31751976

RESUMO

Pathogenic bacterial infection, especially in the wound, may threaten human health. Developing new antibacterial materials for wound healing is still urgent. Metal nanoclusters have been explored as a novel antibacterial agent. Herein, biomolecule gelatin was chosen as a substrate and functionalized with gold/silver clusters for bacterial killing. Through a simple amidation reaction, gold/silver clusters were successfully conjugated in a gelatin substrate to obtain a Au/Ag@gelatin sponge. The presence of gold/silver clusters modified the porous structure of the gelatin. Thus, the water absorption and water retention of the Au/Ag@gelatin sponge were enhanced. More importantly, the gold/silver clusters show aggregation-enhanced emission and strong reactive oxygen generation, that endow the Au/Ag@gelatin sponge with a good antibacterial property. The good physical performance and favorable bactericidal activity of the Au/Ag@gelatin sponge suggest its potential for application as a wound dressing.


Assuntos
Antibacterianos/farmacologia , Gelatina/farmacologia , Ouro/química , Prata/química , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Gelatina/química , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Porosidade , Pseudomonas aeruginosa/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Suínos
3.
Phys Chem Chem Phys ; 17(34): 22064-71, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26234367

RESUMO

Nanotubular TiO2 has attracted considerable attention owing to its unique functional properties, including high surface area and vectorial charge transport along the nanotube, making it a good photocatalytic material. Anodic TiO2-nanotube (TiNT) arrays on a Ti foil substrate were prepared by electrochemical anodic oxidation and SEM/HRTEM/XRD analyses have suggested that the walls of TiO2 tubes are formed from stacked [101] planes (anatase). Both HRTEM and XRD indicate an interplanar spacing of d101 = 0.36 nm in the wall structure. Despite the large amount of work done on nanotube synthesis, a thorough investigation of the electronic and atomic structures of free-standing TiNT arrays has not yet been carried out. X-ray absorption spectroscopy (XAS), resonant inelastic X-ray scattering (RIXS) and scanning photoelectron microscopy (SPEM) are employed herein to examine the electronic and atomic structures at the top and bottom of TiNT arrays. These analyses demonstrate the presence of mixed valence states of the Ti ions (Ti(3+) and Ti(4+)) and a structural distortion at the bottom cap region of the TiNT. Additionally, the results obtained herein suggest the formation of a defective anatase phase at the bottom cap barrier layer between the Ti foil substrate and TiNT during the growth of electrochemically anodized nanotubes.

4.
Phys Chem Chem Phys ; 17(5): 3482-9, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25533311

RESUMO

Gasochromic VO2 thin films were fabricated by the sol-gel spin-coating technique. The results of X-ray absorption spectroscopy and resonant inelastic X-ray scattering spectroscopy reveal that the origin of gasochromic coloration in VO2 is strongly related to the modulation of its structure and the electron-electron correlation. Upon gasochromic coloration, not only does the valence state change with the incorporation of hydrogen, but also the film undergoes the modification of the local atomic structure. The structural distortion varies the strength of hybridization of the O 2p-V 3d states and the bond distance of V-O and V-O varies. In the hydric process, the local atomic structure of VO2 changes from that of an un-symmetric to that of a symmetric V-O framework. The incorporated hydrogen adds electrons into the V 3d t2g orbital, enhancing the electron-electron correlation by reducing the V-V distance. This work presents a new physical insight in which the modulation of the electron-electron correlation is exploited to control the bleached and colored states, giving rise to the gasochromic phenomenon. The strong correlation among atomic spatial rearrangement, electronic structures, and transmittance supports a cooperative mechanism of the VO2 gasochromic transition. These results reveal a clear correlation between the dynamics of the lattice structure and the electronic properties and suggest a possible pathway to gasochromism and elucidation of its mechanism.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38954646

RESUMO

Na-O2 batteries have emerged as promising candidates due to their high theoretical energy density (1,601 Wh kg-1), the potential for high energy storage efficiency, and the abundance of sodium in the earth's crust. Considering the safety issue, quasi-solid-state composite polymer electrolytes are among the promising solid-state electrolyte candidates. Their higher mechanical toughness provides superior resistance to dendritic penetration compared with traditional liquid electrolytes. The flexibility of the composite polymer electrolyte matrix allows it to conform to various battery configurations and considerably reduces safety concerns related to the combustion risks associated with conventional liquid electrolytes. In this study, we employed poly(ethylene oxide) (PEO) and sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) as the polymer matrix and sodium ion-conducting agent, respectively. We incorporated nanosized NZSP (25 wt %) to create the composite polymer electrolyte membrane. This CPE design facilitates ion conduction pathways through both sodium salt and NZSP. By utilizing a liquid electrolyte infiltration method, we successfully enhanced its ionic conductivity, achieving an ionic conductivity of 10-4 S cm-1 at room temperature.

6.
ChemSusChem ; 16(7): e202202151, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36634026

RESUMO

All-solid-state batteries with solid ionic conductors packed between solid electrode films can release the dead space between them, enabling a greater number of cells to stack, generating higher voltage to the pack. This Review is focused on using high-voltage cathode materials, in which the redox peak of the components is extended beyond 4.7 V. Li-Ni-Mn-O systems are currently under investigation for use as the cathode in high-voltage cells. Solid electrolytes compatible with the cathode, including halide- and sulfide-based electrolytes, are also reviewed. Discussion extends to the compatibility between electrodes and electrolytes at such extended potentials. Moreover, control over the thickness of the anode is essential to reduce solid-electrolyte interphase formation and growth of dendrites. The Review discusses routes toward optimization of the cell components to minimize electrode-electrolyte impedance and facilitate ion transportation during the battery cycle.

7.
J Nanosci Nanotechnol ; 12(2): 1341-3, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22629952

RESUMO

Au line nanostructures with different pitch distances from 500 nm to 950 nm on ITO coated glass substrates have been fabricated at room temperature for exploring the color light guide in all kinds of display system. The patterned Au line array is used as a light outcoupling and color-selection component due to the emission wavelength changed by the Au line arrays with different pitch distances that could achieve multi-color selections. The ITO coated glass substrates patterned with periodic Au line arrays with controlled line pitches has been demonstrated and used as a color filter in all display devices. Using a proper pitch distance of Au line nanostructures, the basic third colors of red, green, and blue (RGB) can be simply gained and controlled without a traditional color filter for future optoelectronic display devices.

8.
Adv Sci (Weinh) ; 9(20): e2201353, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35478495

RESUMO

Bismuth telluride-based thermoelectric (TE) materials are historically recognized as the best p-type (ZT = 1.8) TE materials at room temperature. However, the poor performance of n-type (ZT≈1.0) counterparts seriously reduces the efficiency of the device. Such performance imbalance severely impedes its TE applications either in electrical generation or refrigeration. Here, a strategy to boost n-type Bi2 Te2.7 Se0.3 crystals up to ZT = 1.42 near room temperature by a two-stage process is reported, that is, step 1: stabilizing Seebeck coefficient by CuI doping; step 2: boosting power factor (PF) by synergistically optimizing phonon and carrier transport via thermal-driven Cu intercalation in the van der Waals (vdW) gaps. Theoretical ab initio calculations disclose that these intercalated Cu atoms act as modulation doping and contribute conduction electrons of wavefunction spatially separated from the Cu atoms themselves, which simultaneously lead to large carrier concentration and high mobility. As a result, an ultra-high PF ≈63.5 µW cm-1 K-2 at 300 K and a highest average ZT = 1.36 at 300-450 K are realized, which outperform all n-type bismuth telluride materials ever reported. The work offers a new approach to improving n-type layered TE materials.

9.
Nanomaterials (Basel) ; 12(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35957004

RESUMO

The surface plasmonic resonance, surface wettability, and related mechanical nanohardness and of face-centered-cubic (fcc) chromium nitride (CrN) films have been successfully manipulated via the simple method of tuning nitrogen-containing gas with different nitrogen-to-argon ratios, varying from 3.5 (N35), to 4.0 (N40), to 4.5 (N45), which is directly proportional to argon. All of the obtained CrN films showed that the surface wettability was due to hydrophilicity. All of the characteristics were mainly confirmed and explained by using X-ray diffraction (XRD) patterns, including plan-view and cross-section SEM images, with calculations of the average grain size performed via histograms accompanied by different preferred grain orientations. In the present work, not only the surface plasmonic resonance, but also the surface wettability and the related mechanical nanohardness of CrN films were found to be tunable via a simple method of introducing adjustable nitrogen-reactive-containing gas during the deposition process, while the authors suggest that the crystal orientation transition from the (111) to the (200) crystalline plane changed significantly with the nitrogen-containing gas. So the transition of the preferred orientation of CrN's cubic close-packed from (111) to (200) varied at this composite, caused and found by the nitrogen-containing gas, which can be tuned by the nitrogen-to-argon ratio. The surface plasmonic resonance and photoluminescence quenching effects were coupled photon and electron oscillations, which could be observed, and which existed at the interface between the CrN and Au metals in the designed heterostructures.

10.
Front Chem ; 9: 653718, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33987169

RESUMO

Monodispersed FePt core and FePt-Au core-shell nanoparticles (NPs) have been chemically synthesized in liquid solution and with controllable surface-functional properties. The NP size was increased from 2.5 nm for FePt to 6.5 nm for FePt-Au, which could be tuned by the initial concentration of gold acetate coated onto FePt seeding NPs via a seed-mediated formation of self-assembled core-shell nanostructures. The analyses of the interplanar spacing obtained from the high-resolution transmission electron microscopy (HRTEM), selective electron diffraction pattern (SAED), and x-ray diffraction (XRD) confirmed that both FePt core and Au shell belong to the face-centered cubic (fcc) structure. FePt-Au NPs have a surface plasmon resonance (SPR) peak at 528 nm in the visible optical band region, indicating the red shift compared with the typical theoretical value of 520 nm of pure Au NPs. The surface modification and ligand exchange of FePt-Au was using mercaptoacetic acid (thiol) as a phase transfer reagent that turned the NPs hydrophilic due to the functional carboxyl group bond on the surface of presented multifunctional magnetic-plasmonic NPs. The water-dispersible FePt-based NPs conjugated with biomolecules could reach the different biocompatibility requirements and also provide enough heating response that acted as a potential agent for magnetic fluid hyperthermia in biomedical engineering research fields.

11.
ACS Appl Mater Interfaces ; 13(23): 26759-26769, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34076419

RESUMO

Glioblastoma (GBM) is one of the deadliest and most invasive brain cancers/gliomas, and there is currently no established way to treat this disease. The treatment of GBM typically involves intracranial surgery followed by chemotherapy. However, the blood-brain barrier (BBB) impedes the delivery of the chemotherapeutic drug, making the treatment challenging. In this study, we embedded a chemotherapeutic drug and other nanomaterials into a nanobubble (NB), utilized active tracking and other guidance mechanisms to guide the nanocomposite to the tumor site, and then used high-intensity focused ultrasound oscillation to burst the nanobubbles, generating a transient cavitation impact on the BBB and allowing the drug to bypass it and reach the brain. FePt enhances the resolution of T2-weighted magnetic resonance imaging images and has magnetic properties that help guide the nanocomposite to the tumor location. FePt nanoparticles were loaded into the hydrophobic core of the NBs along with doxorubicin to form a bubble-based drug delivery system (Dox-FePt@NB). The surface of the NBs is modified with a targeting ligand, transferrin (Dox-FePt@NB-Tf), giving the nanocomposite active tracking abilities. The Dox-FePt@NB-Tf developed in the present study represents a potential breakthrough in GBM treatment through improved drug delivery and biological imaging.


Assuntos
Barreira Hematoencefálica/metabolismo , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Ferro/química , Nanopartículas Metálicas/administração & dosagem , Platina/química , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Proliferação de Células , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Imageamento por Ressonância Magnética , Nanopartículas Metálicas/química , Camundongos , Nanocompostos/química , Medicina de Precisão , Células Tumorais Cultivadas , Ultrassom/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
ACS Appl Mater Interfaces ; 13(37): 44266-44273, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34494812

RESUMO

An effective Ru/CNT electrocatalyst plays a crucial role in solid-state lithium-carbon dioxide batteries. In the present article, ruthenium metal decorated on a multi-walled carbon nanotubes (CNTs) is introduced as a cathode for the lithium-carbon dioxide batteries with Li1.5Al0.5Ge1.5(PO4)3 solid-state electrolyte. The Ru/CNT cathode exhibits a large surface area, maximum discharge capacity, excellent reversibility, and long cycle life with low overpotential. The electrocatalyst achieves improved electrocatalytic performance for the carbon dioxide reduction reaction and carbon dioxide evolution reaction, which are related to the available active sites. Using the Ru/CNT cathode, the solid-state lithium-carbon dioxide battery exhibits a maximum discharge capacity of 4541 mA h g-1 and 45 cycles of battery life with a small voltage gap of 1.24 V compared to the CNT cathode (maximum discharge capacity of 1828 mA h g-1, 25 cycles, and 1.64 V as voltage gap) at a current supply of 100 mA g-1 with a cutoff capacity of 500 mA h g-1. Solid-state lithium-carbon dioxide batteries have shown promising potential applications for future energy storage.

13.
ACS Appl Mater Interfaces ; 12(37): 41515-41526, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32799525

RESUMO

Si is regarded as a promising photocathode material for solar hydrogen evolution reaction (HER) because of its small band gap and highly negative conduction band edge. However, bare Si electrodes have high overpotential because of sluggish HER kinetics on the surface. In this study, molybdenum tungsten sulfide (MoS2-WS2) was decorated on Si photocathodes as the co-catalyst to accelerate HER kinetics. The catalytic performance of MoS2-WS2 was further enhanced by introducing phosphate materials. Phosphate-modified molybdenum tungsten sulfide (PO-MoWS) was deposited on Si photoabsorbers to provide an optimal current of -15.0 mA cm-2 at 0 V. Joint characterizations of X-ray photoelectron and X-ray absorption spectroscopies demonstrated that the phosphate material dominantly coordinated with the WS2 component in PO-MoWS. Moreover, this phosphate material induced a large number of sulfur vacancies in the PO-MoWS/Si electrodes that contributed to the ideal catalytic activity. Herein, TiO2 thin films were prepared as the protective layer to improve the stability of photocathodes. The PO-MoWS/2 nm TiO2/Si electrode maintained 83.8% of the initial photocurrent after chronoamperometric measurement was performed for 8000 s.

14.
Nanoscale ; 12(15): 8385-8396, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32239028

RESUMO

Herein, ruthenium (Ru) nanoparticles were anchored on carbon nanotubes (Ru/CNTs) functionalized as catalyst cathodes for non-aqueous Li-CO2 cells. For cycling tests through a low cut-off capacity (100 mA h g-1), the origin of battery deterioration resulted from the accumulation of Li2CO3 discharging products on catalytic surfaces, identical to the observations in previous studies. However, the Li-CO2 cells in this work showed a sudden death within several cycles of high cut-off capacity (500 mA h g-1), and no Li2CO3 residues were investigated on the cathode. In contrast, Li dendrites and passivation materials (LiOH and Li2CO3) were generated on Li anodes upon cycling at a limited capacity of 500 mA h g-1, which dominantly contributed to the battery degradation. A Li foil-replacement method was adopted to make the Ru/CNT cathode perform continuous 100 cycles under a cut-off capacity of 500 mA h g-1. These results indicate that not only Li2CO3 residues blocked on the active sites of the cathode but also Li dendrites and passivation materials produced on the anode caused Li-CO2 battery deterioration. Moreover, in the present work, a carbon thin film was deposited on Li metal (C/Li) by a sputtering system for suppressing the dendrite formation upon cycling and promoting the defense of the H2O attack from the electrolyte disintegration. The Li-CO2 cell with a Ru/CNT catalyst and a C/Li anode revealed an improved electrochemical stability of 115 cycles at a limited capacity of 500 mA h g-1. This proto strategy provided a significant research direction focusing on Li anodes for elevating the Li-CO2 battery durability.

15.
ACS Appl Mater Interfaces ; 12(49): 54671-54682, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33242954

RESUMO

Hydrogen energy is a promising alternative for fossil fuels because of its high energy density and carbon-free emission. Si is an ideal light absorber used in solar water splitting to produce H2 gas because of its small band gap, appropriate conduction band position, and high theoretical photocurrent. However, the overpotential required to drive the photoelectrochemical (PEC) hydrogen evolution reaction (HER) on bare Si electrodes is severely high owing to its sluggish kinetics. Herein, a molybdenum tungsten disulfide (MoS2-WS2) composite decorated on a Si photoabsorber is used as a cocatalyst to accelerate HER kinetics and enhance PEC performance. This MoS2-WS2 hybrid showed superior catalytic activity compared with pristine MoS2 or WS2. The optimal MoS2-WS2/Si electrode delivered a photocurrent of -25.9 mA/cm2 at 0 V (vs reversible hydrogen electrode). X-ray absorption spectroscopy demonstrated that MoS2-WS2 possessed a high hole concentration of unoccupied electronic states in the MoS2 component, which could promote to accept large amounts of carriers from the Si photoabsorber. Moreover, a large number of sulfur vacancies are generated in the MoS2 constituent of this hybrid cocatalyst. These sulfur defects served as HER active sites to boost the catalytic efficiency. Besides, the TiO2-protective MoS2-WS2/Si photocathode maintained a current density of -15.0 mA/cm2 after 16 h of the photocatalytic stability measurement.

16.
Sci Rep ; 9(1): 8616, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197195

RESUMO

In this work, a high thermoelectric figure of merit, zT of 1.9 at 740 K is achieved in Ge1-xBixTe crystals through the concurrent of Seebeck coefficient enhancement and thermal conductivity reduction with Bi dopants. The substitution of Bi for Ge not only compensates the superfluous hole carriers in pristine GeTe but also shifts the Fermi level (EF) to an eligible region. Experimentally, with moderate 6-10% Bi dopants, the carrier concentration is drastically decreased from 8.7 × 1020 cm-3 to 3-5 × 1020 cm-3 and the Seebeck coefficient is boosted three times to 75 µVK-1. In the meantime, based on the density functional theory (DFT) calculation, the Fermi level EF starts to intersect with the pudding mold band at L point, where the band effective mass is enhanced. The enhanced Seebeck coefficient effectively compensates the decrease of electrical conductivity and thus successfully maintain the power factor as large as or even superior than that of the pristine GeTe. In addition, the Bi doping significantly reduces both thermal conductivities of carriers and lattices to an extremely low limit of 1.57 W m-1K-1 at 740 K with 10% Bi dopants, which is an about 63% reduction as compared with that of pristine GeTe. The elevated figure of merit observed in Ge1-xBixTe specimens is therefore realized by synergistically optimizing the power factor and downgrading the thermal conductivity of alloying effect and lattice anharmonicity caused by Bi doping.

17.
Sci Rep ; 8(1): 1338, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358660

RESUMO

Stress variation induced bandgap tuning and surface wettability switching of spinel nickel ferrite (NiFe2O4, NFO) films were demonstrated and directly driven by phase transition via a post-annealing process. Firstly, the as-deposited NFO films showed hydrophilic surface with water contact angle (CA) value of 80 ± 1°. After post-annealing with designed temperatures ranged from 400 to 700 °C in air ambience for 1 hour, we observed that the crystal structure was clearly improved from amorphous-like/ nanocrystalline to polycrystalline with increasing post-annealing temperature and this phenomenon is attributed to the improved crystallinity combined with relaxation of internal stress. Moreover, super-hydrophilic surface (CA = 14 ± 1°) was occurred due to the remarkable grain structure transition. The surface wettability could be adjusted from hydrophilicity to super-hydrophilicity by controlling grain morphology of NFO films. Simultaneously, the saturation magnetization (Ms) values of NFO films at room temperature increased up to 273 emu/cm3 accompanied with transitions of the phase and grain structure. We also observed an exceptionally tunable bandgap of NFO in the range between 1.78 and 2.72 eV under phase transition driving. Meanwhile, our work demonstrates that direct grain morphology combined with the stress tuning can strongly modulate the optical, surface and magnetic characteristics in multifunctional NFO films.

18.
ACS Appl Mater Interfaces ; 10(43): 37142-37149, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30296046

RESUMO

Cobalt sulfide (CoS x) functioned as a co-catalyst to accelerate the kinetics of photogenerated electrons on Si photocathode, leading to the enhancement of solar hydrogen evolution efficiency. By doping phosphorus heteroatoms, CoS x materials showed an improved catalytic activity because of superior surface area and quantity of active sites. Furthermore, increased vacancies in unoccupied electronic states were observed, as more phosphorus atoms doped into CoS x co-catalysts. Although these vacant sites improved the capability to accept photoinduced electrons from Si photoabsorber, chemisorption energy of atomic hydrogen on catalysts was the dominant factor affecting in photoelectrochemical performance. We suggested that P-doped CoS x with appropriate doping quantities showed thermoneutral hydrogen adsorption. Excess phosphorus dopants in CoS x contributed to excessively strong adsorption with H atoms, causing the poor consecutive desorption ability of photocatalytic reaction. The optimal P-doped CoS x-decorated Si photocathode showed a photocurrent of -20.6 mA cm-2 at 0 V. Moreover, a TiO2 thin film was deposited on the Si photocathode as a passivation layer for improving the durability. The current density of 10 nm TiO2-modified photocathode remained at approximately -13.3 mA cm-2 after 1 h of chronoamperometry.

19.
Materials (Basel) ; 10(2)2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28772541

RESUMO

The chemical reduction of ferric acetylacetonate (Fe(acac)3) and platinum acetylacetonate (Pt(acac)2) using the polyol solvent of phenyl ether as an agent as well as an effective surfactant has successfully yielded monodispersive FePt nanoparticles (NPs) with a hydrophobic ligand and a size of approximately 3.8 nm. The present FePt NPs synthesized using oleic acid and oleylamine as the stabilizers under identical conditions were achieved with a simple method. The surface modification of FePt NPs by using mercaptoacetic acid (thiol) as a phase transfer reagent through ligand exchange turned the NPs hydrophilic, and the FePt NPs were water-dispersible. The hydrophilic NPs indicated slight agglomeration which was observed by transmission electron microscopy images. The thiol functional group bond to the FePt atoms of the surface was confirmed by Fourier transform infrared spectroscopy (FTIR) spectra. The water-dispersible FePt NPs employed as a heating agent could reach the requirement of biocompatibility and produce a sufficient heat response of 45 °C for magnetically induced hyperthermia in tumor treatment fields.

20.
Sci Rep ; 7: 43281, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28233827

RESUMO

The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from -1.62 GPa to -0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA