RESUMO
BACKGROUND: Circulating tumor DNA (ctDNA) offers a convenient way to monitor tumor progression and treatment response. Because tumor mutational profiles are highly variable from person to person, a fixed content panel may be insufficient to track treatment response in all patients. METHODS: We design ctDNA fingerprint panels specific to individual patients which are based on whole exome sequencing and target to high frequency clonal population clusters in patients. We test the fingerprint panels in 313 patients who together have eight tumor types (colorectal, hepatocellular, gastric, breast, pancreatic, and esophageal carcinomas and lung cancer and cholangiocarcinoma) and exposed to multiple treatment methods (surgery, chemotherapy, radiotherapy, targeted-drug therapy, immunotherapy, and combinations of them). We also monitor drug-related mutations in the patients using a pre-designed panel with eight hotspot genes. RESULTS: 291 (93.0%) designed fingerprint panels harbor less than ten previously known tumor genes. We detected 7475 ctDNA mutations in 238 (76%) patients and 6196 (96.0%) of the mutations are detected in only one test. Both the level of ctDNA content fraction (CCF) and fold change of CCF (between the definitive and proceeding tests) are highly correlated with clinical outcomes (p-values 1.36e-6 for level and 5.64e-10 for fold change, Kruskal-Wallis test). The CCFs of PD patients are an order of magnitude higher than the CCFs of SD and OR patients (median/mean 2.22%/8.96% for SD, 0.18/0.21% for PD, and 0.31/0.54% for OR; pairwise p-values 7.8e-6 for SD ~ PD, 2.7e-4 for OR ~ PD, and 7.0e-3 for SD ~ OR, Wilcoxon rank sum test). The fold change of CCF distinguishes the patient groups even better, which increases for PD, remains stable for SD, and decreases for OR patients (p-values 0.002, ~ 1, and 0.0001 respectively, Wilcoxon signed-rank test). Eleven drug-related mutations are identified from nine out of the 313 patients. CONCLUSIONS: The ctDNA fingerprint method improves both specificity and sensitivity of monitoring treatment response across several tumor types. It can identify tumor relapse/recurrence potentially earlier than imaging-based diagnosis. When augmented with tumor hotspot genes, it can track acquired drug-related mutations in patients.
Assuntos
DNA Tumoral Circulante , Neoplasias , Biomarcadores Tumorais , DNA Tumoral Circulante/genética , DNA de Neoplasias , Genes Neoplásicos , Humanos , Mutação/genética , Recidiva Local de Neoplasia/genética , Neoplasias/sangue , Neoplasias/genética , Neoplasias/terapiaRESUMO
Exploring the genetic aberrations favoring metastasis is important for understanding and developing novel strategies to combat cancer metastasis. It remains lack of effective treatment for the dismal prognosis of intrahepatic cholangiocarcinoma (ICC). Here, we aimed to study genetic alternations during lymph node metastasis of ICC and investigate potential mechanisms and clinical strategy focused on mutations. We performed whole-exome sequencing and transcriptome sequencing on samples from 30 ICC patients, including lymph node metastases from five of the patients. We identified the alterations of genetic pattern related to lymph node metastases of ICC. EPHA2, a member of the tyrosine kinase family, was found to be frequently mutated in ICC. Correlation analysis indicated that EPHA2 mutations were closely associated with lymph node metastasis of ICC. In vitro and in vivo experiments revealed that EPHA2 mutations could lead to ligand independent phosphorylation of Ser897, and promote lymphatic metastasis of ICC, in which NOTCH1 signaling pathway played an important role. In both in vitro assays and patient-derived xenografts, an inhibitor of Ser897 phosphorylation effectively suppressed the metastasis of ICC with mutated EPHA2. Our findings demonstrated that EPHA2 mutants may be an attractive therapeutic target for lymphatic metastasis of ICC.
Assuntos
Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Efrina-A2/genética , Metástase Linfática/genética , Metástase Linfática/patologia , Mutação/genética , Adulto , Idoso , Animais , Linhagem Celular , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Linfonodos/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Prognóstico , Receptor EphA2 , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Resultado do Tratamento , Sequenciamento do Exoma/métodosRESUMO
BACKGROUND As an important aspect of tumor heterogeneity, genetic variation may influence susceptibility and prognosis in different types of cancer. By exploring the prognostic value of genetic variation, this study aimed to establish a model for predicting postoperative survival and assessing the impact of variation on clinical outcomes in patients with hepatocellular carcinoma (HCC). MATERIAL AND METHODS A genome-wide association study of 367 patients with HCC was conducted to identify single nucleotide polymorphisms (SNPs) associated with prognosis. Identified predictors were further evaluated in 758 patients. Two prognostic models were established using Cox proportional hazards regression and Nomogram strategy, and validated in another 316 patients. The effect of the SNP rs2431 was analyzed in detail. RESULTS A prognostic model including 5 SNPs (rs10893585, rs2431, rs34675408, rs6078460, and rs6766361) was established and exhibited high predictive accuracy for HCC prognosis. The panel combined with tumor node metastasis (TNM) stage resulted in a significantly higher c-index (0.723) than the individual c-index values. Stratified by the Nomogram prediction model, the median overall survival for the low-risk and high-risk groups were 100.1 versus 30.8 months (P<0.001) in the training set and 82.2 versus 22.5 months (P<0.001) in the validation set. A closer examination of rs2431 revealed that it may regulate the expression of FNDC3B by disrupting a microRNA-binding site. CONCLUSIONS This study established prediction models based on genetic factors alone or in combination with TNM stage for postoperative survival in patients with HCC, and identified FNDC3B as a potential therapeutic target for combating HCC metastasis.
Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidade , Testes Genéticos/métodos , Adulto , Idoso , Povo Asiático/genética , Linhagem Celular Tumoral , China , Feminino , Fibronectinas/genética , Fibronectinas/metabolismo , Estudo de Associação Genômica Ampla/métodos , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade , Nomogramas , Polimorfismo de Nucleotídeo Único/genética , Período Pós-Operatório , Prognóstico , Fatores de RiscoRESUMO
BACKGROUND: Primary liver cancer (PLC) is the third largest contributor to cancer mortality in the world. PLC is a heterogeneous disease that encompasses several biologically distinct subtypes including hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and combined hepatocellular-cholangiocarcinoma (CHC). CHC is a distinct, albeit rare, subtype of PLC and is comprised of cells with histopathological features of both HCC and ICC. Several studies have focused on the mutation and expression landscapes of HCC and ICC. However, studies of CHC were rare. OBJECTIVE: The aim of the current study was to identify genetic and gene expression alterations in the carcinogenesis and development of CHC and ICC in the Chinese population. Unraveling both similar and differing patterns among these subtypes may help to identify personalized medicine approaches that could improve patient survival. METHODS: Whole genome sequencing (WGS), whole exome sequencing (WES) and RNA-seq were performed on 10 ICC and 10 CHC samples, matched with adjacent non-tumor liver tissue specimens. Comparative analysis was performed using HCC datasets from The Cancer Genome Atlas (TCGA). RESULTS: Mutational and transcriptional landscapes of CHC and ICC were clearly delineated. TP53 and CTNNB1 were identified as exhibiting mutations in CHC. ARID1A, PBRM1, and IDH1 were frequently mutated in ICC. RYR3, FBN2, and KCNN3 are associated with cell migration and metastasis and might be driver genes in CHC. KCNN3 was identified as also exhibiting mutations in ICC. The ECM-receptor interaction pathway associated fibrogenic hepatic progenitor cell differentiation and liver fibrosis may play an important role in carcinogenesis of PLC. Chromatin remodeling and chromosome organization are key processes in carcinogenesis and development in PLC. P53 related pathways showed alterations in CHC and HCC. Inflammation may be a key factor involved in ICC carcinogenesis. CONCLUSION: CHC and ICC are different subtypes of PLC. This study discusses predominantly the molecular genetic details of PLC subtypes and highlights the need for an accurate diagnosis and treatment of specific PLC subtypes to optimize patient management.
Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Neoplasias Hepáticas , Transcriptoma , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismoRESUMO
UNLABELLED: Down-regulation of microRNA-26a (miR-26a) is associated with poor prognosis of hepatocellular carcinoma (HCC), but its functional mechanism in HCC remains unclear. In this study, we investigated the roles of miR-26a in tumor growth and metastasis of HCC and found that miR-26a was frequently down-regulated in HCC tissues. Down-regulation of miR-26a correlated with HCC recurrence and metastasis. Through gain- and loss-of-function studies, miR-26a was demonstrated to significantly inhibit in vitro cell proliferation, migration, and invasion. In addition, miR-26a induced G1 arrest and promoted apoptosis of HCC cells. Importantly, miR-26a suppressed in vivo tumor growth and metastasis in nude mice models bearing human HCC. Interleukin-6 (IL-6) was identified as a target of miR-26a. Knockdown of IL-6 induced effects on HCC cells similar to those induced by miR-26a. In contrast, IL-6 treatment abrogated the effects induced by miR-26a up-regulation. Moreover, miR-26a dramatically suppressed expression of signal transducer and activator of transcription 3 (Stat3) target genes, including Bcl-2, Mcl-1, cyclin D1, and MMP2. IL-6 treatment antagonized this effect, while knockdown of IL-6 by IL-6 short hairpin RNA (shIL-6) induced inhibitory effects on the expression of p-Stat3 and its main target genes, similar to miR-26a. The messenger RNA and protein levels of IL-6 inversely correlated with miR-26a in HCCs. Patients with high miR-26a or low IL-6 in HCC tissues had a better prognosis with longer overall survival (OS) and time to recurrence (TTR). In multivariate analysis, miR-26a, IL-6, and their combination were demonstrated to be independent prognostic indicators for OS and TTR of HCC patients. CONCLUSION: miR-26a could suppress tumor growth and metastasis of HCC through IL-6-Stat3 signaling and is a novel prognostic marker and therapeutic target for HCC.
Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Interleucina-6/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , MicroRNAs/uso terapêutico , Animais , Carcinoma Hepatocelular/secundário , Regulação para Baixo , Feminino , Humanos , Interleucina-6/farmacologia , Neoplasias Hepáticas/secundário , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais/efeitos dos fármacosRESUMO
To tackle misdiagnosis in lung cancer screening with low-dose computed tomography (LDCT), we aimed to compile a genome atlas for differentiating benign, preinvasive, and invasive lung nodules and characterize their molecular pathogenesis. We collected 432 lung nodule tissue samples from Chinese patients, spanning benign, atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IA). We performed comprehensive sequencing, examining somatic variants, gene expressions, and methylation levels. Our findings uncovered EGFR and TP53 mutations as key drivers in - early lung cancer development, with EGFR mutation frequency increasing with disease progression. Both EGFR mutations and EGF/EGFR hypo-methylation activated the EGFR pathway, fueling cancer growth. Transcriptome analysis identified four lung nodule subtypes (G1-4) with distinct molecular features and immune cell infiltrations: EGFR-driven G1, EGFR/TP53 co-mutation G2, inflamed G3, stem-like G4. Estrogen/androgen response was associated with the EGFR pathway, proposing a new therapy combining tyrosine kinase inhibitors with antiestrogens. Preinvasive nodules exhibited stem cell pathway enrichment, potentially hindering invasion. Epigenetic regulation of various genes was essential for lung cancer initiation and development. This study provides insights into the molecular mechanism of neoplastic progression and identifies potential diagnostic biomarkers and therapeutic targets for lung cancer.
RESUMO
BACKGROUND: The current standard of care for locally advanced gastric cancer (GC) involves neoadjuvant chemotherapy followed by radical surgery. Recently, neoadjuvant treatment for this condition has involved the exploration of immunotherapy plus chemotherapy as a potential approach. However, the efficacy remains uncertain. METHODS: A single-arm, phase 2 study was conducted to evaluate the efficacy and tolerability of neoadjuvant camrelizumab combined with mFOLFOX6 and identify potential biomarkers of response through multi-omics analysis in patients with resectable locally advanced GC. The primary endpoint was the pathological complete response (pCR) rate. Secondary endpoints included the R0 rate, near pCR rate, progression-free survival (PFS), disease-free survival (DFS), and overall survival (OS). Multi-omics analysis was assessed by whole-exome sequencing, transcriptome sequencing, and multiplex immunofluorescence (mIF) using biopsies pre- and post-neoadjuvant therapy. RESULTS: This study involved 60 patients, of which 55 underwent gastrectomy. Among these, five (9.1%) attained a pathological complete response (pCR), and 11 (20.0%) reached near pCR. No unexpected treatment-emergent adverse events or perioperative mortality were observed, and the regimen presented a manageable safety profile. Molecular changes identified through multi-omics analysis correlated with treatment response, highlighting associations between HER2-positive and CTNNB1 mutations with treatment sensitivity and a favourable prognosis. This finding was further supported by immune cell infiltration analysis and mIF. Expression data uncovered a risk model with four genes (RALYL, SCGN, CCKBR, NTS) linked to poor response. Additionally, post-treatment infiltration of CD8+ T lymphocytes positively correlates with pathological response. CONCLUSION: The findings suggest the combination of PD-1-inhibitor and mFOLFOX6 showed efficacy and acceptable toxicity for locally advanced GC. Extended follow-up is required to determine the duration of the response. This study lays essential groundwork for developing precise neoadjuvant regimens.
Assuntos
Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Terapia Neoadjuvante , Neoplasias Gástricas , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fluoruracila/uso terapêutico , Leucovorina/uso terapêutico , Multiômica , Terapia Neoadjuvante/métodos , Compostos Organoplatínicos/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Resultado do TratamentoRESUMO
Niulanshan Baijiu (NLS), a notable variety of Baijiu known for its light flavor and extensive historical legacy, was subjected to a comparative analysis using two different processes: Hunzheng Xucha (HX) and Qingzheng Qingcha (QQ). The study combined sensory-oriented flavor analysis and penalty analysis to assess the differences between the two processes. Aroma compounds in NLS were extracted using liquid-liquid extraction and headspace solid phase microextraction. Gas chromatography-olfactometry-mass spectrometry was employed to identify 46 aroma-active compounds, including the first-time discovery of ethyl isohexanoate and 2,4-nonadienal in NLS. Quantification of 35 compounds with odor activity value (OAV) ≥ 1 was achieved using internal standard curve methods. Sensory assessments by a cohort of 111 participants highlighted the preference for HX-NLS in terms of flavor, while QQ-NLS exhibited a sour-Chen aroma that required improvement. The study further revealed the significant impact of acetic acid, butyric acid, hexanoic acid, octanoic acid, and 3-methylbutanal on the sour-Chen aroma in liquor.
RESUMO
Active functional microbiota for producing volatile flavors is critical to Chinese baijiu fermentation. Microbial communities correlated with the volatile metabolites are generally explored using DNA-based sequencing and metabolic analysis. However, the active functional microbiota related to the volatile flavor compounds is poorly understood. In this study, an integrated metatranscriptomic and metabolomics analysis was employed to unravel the metabolite profiles comprehensively and the contributing active functional microbiota for flavor generation during Niulanshan baijiu fermentation. A total of 395, 83, and 181 compounds were annotated using untargeted metabolomics, including LC-MS, GC-MS, and HS-SPME-GC-MS, respectively. Significant variances were displayed in the composition of compounds among different time-point samples according to the heatmaps and orthogonal partial least-square discriminant analysis. The correlation between the active microbiota and the volatile flavors was analyzed based on the bidirectional orthogonal partial least squares discriminant analysis (O2PLS-DA) model. Six bacterial genera, including Streptococcus, Lactobacillus, Pediococcus, Campylobacter, Yersinia, and Weissella, and five fungal genera of Talaromyces, Aspergillus, Mixia, Rhizophagus, and Gloeophyllum were identified as the active functional microbiota for producing the volatile flavors. In summary, this study revealed the active functional microbial basis of unique flavor formation and provided novel insights into the optimization of Niulanshan baijiu fermentation.
RESUMO
Polysaccharides from Huangshui (HS) have the function of antioxidant and immunoregulation, but its intestinal barrier protection activity and the underlying mechanism remains unclear. The present work mainly studied the intestinal barrier protection function and its potential molecular mechanism of a heteropolysaccharide named NLS-2 with a molecular weight of 51.9 kDa. NLS-2 reduced intestinal permeability by decreasing the content of inflammatory cytokines and increasing the expression of tight junction (TJ) protein in LPS-damaged Caco-2 cells, thus protecting the intestinal barrier function. RNA-seq results showed that the differentially expressed genes (DEGs) were mainly enriched in the signaling pathways of MAPK, Toll-like receptor, and NF-κB. Subsequent western blot validation experiments proved that NLS-2 could indeed inhibit the two pathways of MAPK and NF-κB by reducing the expression of TRL4, thereby down-regulating the release of downstream pro-inflammatory cytokines and playing the role of intestinal barrier protection. Collectively, NLS-2 has beneficial effects on LPS-damaged intestinal barrier by inhibiting the TRL4/MyD88/NF-κB and MAPK signaling pathways.
Assuntos
Lipopolissacarídeos , NF-kappa B , Humanos , Células CACO-2 , RNA-Seq , Carboidratos da Dieta , Polissacarídeos/farmacologia , CitocinasRESUMO
The microbial community in the fermented pit determines the quantity and quality of light-flavor liquor. Genetic diversity and the potential functions of the microbial community are often analyzed by DNA-based omics sequencing. However, the features of the active microbial community have not been systematically studied. Here, metatranscriptomic analysis was performed to elucidate the active microbial composition, drivers, and their functions in light-flavor liquor fermentation. Bacterial genera, Lactobacillus, Streptococcus, Pediococcus, Thermotoga, and Faecalibacterium, and fungal genera, Saccharomyces, Talaromyces, Aspergillus, Clavispora, Rhizophagus, Cyberlindnera, and Wickerhamomyces, were the dominant active microorganisms during the fermentation process. Additionally, they dominated the three-stage fermentation successively. Redundancy analysis showed that pH, ethanol, moisture, and starch were the main driving forces of microbial succession. Among the genes for the respective carbohydrate-active enzyme families, those for the glycoside hydrolase family 23, the glycosyltransferase family 2, the carbohydrate-binding module family 50, the polysaccharide lyase family 4, the auxiliary activity family 1, and the carbohydrate esterase family 9 showed the highest expression level. Additionally, the highly expressed enzymes and their contributed microorganisms were found in the key KEGG pathways, including carbohydrate metabolism, energy metabolism, lipid metabolism, and amino acid metabolism. Based on these data, a functional model of carbohydrate hydrolysis, ethanol production, and flavor generation were proposed. Taken together, Saccharomyces, Lactobacillus, Wickerhamomyces, Pediococcus, Candida, and Faecalibacterium were suggested as the core active microorganisms. Overall, our findings provide new insights into the composition, drivers, and functions of the active microorganisms, which is crucial for improving the quality of light-flavor liquor. IMPORTANCE There is an urgent need for discovering the diversity and functions of the active microbial community in solid-state fermentation, especially in the pit of Chinese distilled liquor fermentation. Although the genetic composition of the microbial community has been clarified frequently by DNA-based sequencing, the composition and functions of the active microbial community have not been systematically revealed so far. Therefore, analysis of RNA-based data is crucial for discovering the functional microbial community. In this study, we employed metatranscriptomic analysis to elucidate the active microbial composition, successive drivers, and their functions in light-flavor liquor fermentation. The strategy can be broadly useful for discovering the active microbial community and exploring their functions in other types of flavor distilled liquor or other ecosystems. This study provides new insights into the understanding of the active microbial community composition and its functions.
Assuntos
Microbiota , Bactérias/metabolismo , Carboidratos , DNA/metabolismo , Etanol/metabolismo , Fermentação , Lactobacillus/genéticaRESUMO
This study investigated the interactions between lactic acid (LA) and odorants of Baijiu using headspace solid phase microextraction with gas chromatography-mass spectrometry (HS-SPME-GC-MS), ultraviolet absorption spectroscopy (UV) and nuclear magnetic resonance (NMR). The HS-SPME-GC-MS analysis results showed that LA promoted the volatilities of most of low boiling acids, esters, alcohols, aldehydes and ketones, especially short-chain branched esters were promoted by 41-49%. In contrast, LA suppressed the volatilities of most aromatic compounds. UV spectroscopy, thermodynamic analysis, and NMR combined with theoretical calculations further revealed that the interactions between LA and 4-ethyl-2-methoxyphenol (4-EP), 2-methoxy-4-methylphenol (2-MP) and 1-butanol were dominated by van der Waals forces and supplemented by electrostatic interactions, which included hydrogen bonds formed between the carboxyl group in LA and the hydroxyl and methoxy groups in 4-EP or 2-MP and π-hydrogen bonds between the hydrogen of the carboxyl group of LA and the benzene ring of 4-EP or 2-MP.
Assuntos
Odorantes , Compostos Orgânicos Voláteis , Ésteres/análise , Ácido Láctico , Odorantes/análise , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análiseRESUMO
Background: An open, observational, three-arm clinical study aimed at investigating the efficacy of different neoadjuvant therapies (neoadjuvant immunotherapy with(out) chemotherapy, neoadjuvant chemotherapy, and neoadjuvant targeted therapy) in operable locally advanced non-small cell lung cancer (NSCLC) was conducted (NCT04197076). We report an interim analysis of 49 of 53 evaluable patients. Methods: This study was conducted at Shanghai Chest Hospital and included eligible NSCLC patients who were 18 years old and had clinical stage IIB-IIIB disease. All 49 patients had surgical resection within 4-6 weeks after 2-3 cycles of neoadjuvant treatment consisting of immunotherapy (24 patients), chemotherapy (16 patients), and a targeted therapy (9 patients) regimen starting on the first day of each 21-day cycle. Pathologic complete response (pCR) was evaluated as the primary endpoint. Major pathological response (MPR) and tumor regression rate (TRR) were also evaluated. Results: An improved pathologic complete response was achieved in the neoadjuvant immunotherapy arm compared with the neoadjuvant chemotherapy arm and neoadjuvant targeted therapy arm [20.8% (5/24) vs. 6.3% (1/16) vs. 0.0% (0/9); P = 0.089, 95% CI 0.138-0.151]. More importantly, we found that the curative effect of the neoadjuvant immunotherapy arm in pCR+MPR was better than that of the neoadjuvant chemotherapy arm and neoadjuvant targeted therapy arm [45.8% (11/24) vs. 18.8% (3/16) vs. 0.0% (0/9); P = 0.006, 95% confidence interval, 0.008-0.012]. Different neoadjuvant therapies had a statistically significant effect on postoperative pathological tumor downstaging (P = 0.017). Conclusions: Neoadjuvant immunotherapy was associated with a trend toward better pCR than the neoadjuvant chemotherapy arm and neoadjuvant targeted therapy. Curative effect (pCR + MPR) was significantly better with neoadjuvant immunotherapy (P = 0.006, 95% confidence interval, 0.008-0.012). Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT04197076?recrs=a&cond=NCT04197076&draw=2&rank=1.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adolescente , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , China , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Terapia Neoadjuvante , Estadiamento de NeoplasiasRESUMO
Niulanshan Baijiu (NLS) is a light-flavor Baijiu (LFB) with a long history. The aroma-active compounds in six NLSs with different storage years were analyzed using gas chromatography-olfactometry-mass spectrometry (GC-O-MS), coupled with Osme and aroma extraction dilution analysis (AEDA). A total of 59 odorants were identified, 5 odorants of them were, for the first time, identified as aroma-active compounds of LFB. After quantifying and calculating their odorant activity values (OAVs), 34 compounds had OAVs > 1, and the recombination and omission experiments further confirmed that ethyl acetate, ethyl acrylate, ethyl 2-methylbutyrate, γ-nonalactone, ethyl isovalerate, ethyl butyrate, isoamyl acetate, ethyl caprylate, ethyl valerate, 3-methylbutanal, ß-damascenone, and geosmin have important contributions to the aroma of NLS. One-way ANOVA analysis further found that the contents of key odorants in NLS stored for four to five years were relatively stable. This study provides an important reference for product quality control in NLS.
RESUMO
BACKGROUND: Tumor mutational burden (TMB) is emerging as a promising biomarker in immune checkpoint inhibitor (ICI) therapy. Despite whole-exome sequencing (WES) being the gold standard for quantifying TMB, TMB is determined by selected targeted panels in most cases, and WES-derived TMB data are lacking due to the greater cost and complexity. Determining TMB thresholds is another issue that needs attention. METHODS: A total of 309 patients who had received ICI therapy, representing five cancers (listed in "Results"), were recruited. Among them, 269 patients were evaluable for survival analysis. Tumor and matched blood samples from the patients were analyzed using WES and somatic mutations were determined. TMB is defined as the total number of somatic nonsynonymous mutations in the tumor exome in our study. The patients were divided into different TMB subgroups according to a common fixed number (10 mutations/Mb) or the top tertile within each tumor type. RESULTS: The distribution of WES-derived median TMBs was highly variable across different tumor types, ranging from 2.71 (cholangiocarcinoma) to 2.97 (nervous system tumor), 3.69 (gastric cancer), 4.31 (hepatocellular carcinoma), and 4.64 [colorectal cancer (CRC)] mutations/Mb. In CRC, the survival benefit of TMB-high patients was significant using both the top tertile and the 10 mutations/Mb threshold. In hepatocellular carcinoma, the 10 mutations/Mb threshold showed an advantage over the top tertile threshold. Among patients with nervous system tumors, cholangiocarcinoma, and gastric cancer, no obvious survival differences were observed between the TMB-high and TMB-low groups with either TMB stratification approach. CONCLUSIONS: The TMB threshold criterion may vary for different cancers. Our data suggest that TMB is unable to predict ICI benefit across all cancer types in Chinese patients. However, it may be an effective biomarker for predicting the clinical benefit of ICI therapy for patients with CRC.
RESUMO
BACKGROUND: Analysis of mutational signatures is becoming routine in cancer genomics, with implications for pathogenesis, classification, and prognosis. Among the signatures cataloged at COSMIC, mutational signature 4 has been linked to smoking. However, the distribution of signature 4 in Chinese lung cancer patients has not been evaluated, and its clinical value has not been evaluated. Here we survey mutational signatures in Chinese lung cancer patients and explore the relationship between signature 4 and other genomic features in the patients. METHODS: We extracted mutational signatures from whole-exome sequencing data of Chinese non-small cell lung cancer patients. The data included 401 lung adenocarcinoma (LUAD) and 92 squamous cell carcinoma (LUSC). We then performed statistical analysis to search for genomic and clinical features that can be linked to mutation signatures. RESULTS: We found signature 4 is the most frequent mutational signature in LUSC and the second most frequent in LUAD. Fifty-six LUAD and thirty-five LUSC patients were named with high signature 4 similarities (cosine similarity >0.7). These patients have shorter survival and higher tumor mutational burden comparing to those with low signature 4 similarities. Dozens of genes with single nucleotide variation, index mutations, and copy number variations were differentially enriched in the patients with high signature 4 similarities. Among these genes, CSMD3, LRP1B, TP53, SYNE1, SLIT2, FGF4, and FGF19 are common in both LUADs and LUSCs with high signature 4 similarities, showing that these genes are tightly associated with signature 4. CONCLUSIONS: The present study is the first to report a comparison in Chinese NSCLC patients with or without COSMIC mutational signature 4. These results will help find the Signature 4 related mutational process in NSCLC.
RESUMO
BACKGROUND/AIMS: The paper aimed to investigate the effects of Stigmasterol on inflammatory factors, antioxidant capacity, and apoptotic signaling pathways in brain tissue of rats with cerebral ischemia/reperfusion (I/R) injury. METHODS: The neurological deficits of the rats were analyzed and HE staining was performed. The cerebral infarct volume was calculated by means of TTC staining, and neuronal apoptosis was detected by TUNEL staining. At the same time, the contents of glutathione peroxidase, glutathione, superoxide dismutase (SOD), nitric oxide, and malondialdehyde in brain tissue were measured. The expression of the relevant protein was detected by means of Western blotting. RESULTS: The results showed that the neurological deficit score and infarct area of the I/R rats in the soy sterol treatment group were significantly lower than those in the I/R group. Moreover, the levels of carbon monoxide and malondialdehyde in the soysterol group were significantly lower than those in the I/R group, and the expressions of cyclooxygenase-2 (Cox-2) and NF-κB (p65) in the soysterol group were also significantly lower than those in the I/R group. The expression of Nrf2 (nucleus) and heme oxygenase-1 (HO-1) increased significantly, and the activities of antioxidant enzymes and SOD were increased. In addition, the stigmasterol treatment can inhibit apoptosis, down-regulate Bax and cleaved caspase-3 expression, and up-regulate Bcl-Xl expression. CONCLUSION: Stigmasterol protects the brain from brain I/R damage by reducing oxidative stress and inflammation.
Assuntos
Antioxidantes/farmacologia , Infarto Cerebral/tratamento farmacológico , Encefalite/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Estigmasterol/farmacologia , Animais , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Infarto Cerebral/complicações , Infarto Cerebral/patologia , Modelos Animais de Doenças , Encefalite/etiologia , Encefalite/patologia , Glutationa Peroxidase/metabolismo , Humanos , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Estigmasterol/uso terapêutico , Superóxido Dismutase/metabolismo , Regulação para CimaRESUMO
Aim: To evaluate whether clinical genomic sequencing may benefit Chinese patients with stage IV cancer. Patients & methods: Chinese patients with cancer and their oncologists were provided with genomic sequencing results and corresponding clinical treatment recommendations based on evidence-based medicine, defined as CWES (clinical whole-exome sequencing) analysis. Chinese patients with stage IV cancer who failed the previous treatment upon receiving the CWES reports were included for analyzing the impact of CWES on clinical outcomes in 1-year follow-ups. Results: A total of 88.6% of 953 Chinese patients with cancer had clinically actionable somatic genomic alterations. Eleven patients followed the CWES reports, and 11 patients did not follow the CWES suggestions. The median progression-free survival of two groups were 12 and 4 months, and 45 and 91% of patients failed this round of therapy, respectively. Conclusion: The current study suggested that CWES has the potential to increase clinical benefits for Chinese patients with stage IV cancer.
Assuntos
Análise Mutacional de DNA/métodos , Genômica/métodos , Neoplasias/genética , Neoplasias/patologia , Medicina de Precisão/métodos , China , Medicina Baseada em Evidências , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Estadiamento de Neoplasias , Prognóstico , Análise de SobrevidaRESUMO
BACKGROUND: Tumor mutation burden (TMB), DNA mismatch repair deficiency (dMMR), microsatellite instability (MSI), and PD-L1 amplification (PD-L1 AMP) may predict the efficacy of the PD-1/PD-L1 blockade. With the broadening landscape of immunotherapy use, it is important to identify patients who are likely to benefit from the therapy. This study aimed to characterize the distributions of these biomarkers and explore the relationships among these biomarkers for Chinese patients with cancer. METHODS: In this study, we examined the aforementioned biomarkers in more than 1000 Chinese patients with cancer. These biomarkers were determined based on whole-exome sequencing (WES) of tumor/blood samples. RESULTS: Of the 953 samples from Chinese cancer patients assessed in this study, 35% exhibited high TMB (TMB-H), 4% were positive for high MSI (MSI-H), dMMR occurred in 0.53%, and PD-L1 AMP was positive in 3.79%. We found higher rates of TMB-H among hepatocellular carcinoma, breast cancer, and esophageal cancer patients than was reported for The Cancer Genome Atlas (TCGA) data. Lung cancer patients with EGFR mutations had significantly lower TMB values than those with wild-type EGFR, and increased TMB was significantly associated with dMMR in colorectal cancer (CRC). The frequency of tumors with MSI-H was the highest in CRC and gastric cancer. PD-L1 AMP occurred most frequently in lung squamous cell carcinoma and HER2-positive breast cancer. While MSI and dMMR are associated with higher mutational loads, correlations between TMB-H and other biomarkers, between MSI-H and dMMR, and between PD-L1 AMP and other biomarkers were low, indicating different underlying causes of the four biomarkers. CONCLUSION: The results reveal the frequency of these biomarkers in different malignancies, with potential implications for PD-1/PD-L1 blockade use for Chinese patients with cancer.
Assuntos
Povo Asiático/genética , Biomarcadores Tumorais/genética , Sequenciamento do Exoma/métodos , Neoplasias/genética , Antígeno B7-H1/genética , Receptores ErbB/genética , Feminino , Amplificação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoterapia , Masculino , Instabilidade de Microssatélites , Mutação , Neoplasias/classificação , Neoplasias/tratamento farmacológico , Medicina de PrecisãoRESUMO
MicroRNAs play significant roles in the development of cancer and may serve as promising therapeutic targets. In our previous work, miR-219-5p was identified as one of the important metastasis-related microRNAs in HCC. Here we demonstrated that miR-219-5p expression was elevated in HCC tissues and was associated with vascular invasion and dismal prognosis. In multivariate analysis, miR-219-5p was identified as an independent prognostic indicator for HCC patients. Functional mechanism analyses showed that miR-219-5p promoted HCC cell proliferation and invasion in in vitro, as well as in vivo, tumor growth and metastasis in nude mice models bearing human HCC tumors. In addition, cadherin 1 (CDH1) was revealed to be a downstream target of miR-219-5p in HCC cells. In conclusion, miR-219-5p promotes tumor growth and metastasis of HCC by regulating CDH1 and can serve as a prognostic marker for HCC patients.