Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Cell Immunol ; 391-392: 104759, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37689011

RESUMO

BACKGROUND: Asthma is a common chronic respiratory disease characterized by airways inflammation, hyperresponsiveness and remodeling. IL-37, an anti-inflammatory cytokine, consists of five splice isoforms, that is, a-e. Although it has been previously shown that recombinant human IL-37b is able to inhibit airway inflammation and hyperresponsiveness in animal models of asthma, the effects and difference of other IL-37 isoforms, such as IL-37a on features of asthma are unknown. METHODS: Animal models of chronic asthma were established using IL-37a and IL-37b transgenic mice with C57BL/6J background and wild-type (WT) mice sensitized and nasally challenged with ovalbumin (OVA). Airway hyperresponsiveness was measured using FlexiVent apparatus, while histological and immunohistological stainings were employed to measure airways inflammation and remodeling indexes, including goblet cell metaplasia, mucus production, deposition of collagen, hypertrophy of airway smooth muscles and pulmonary angiogenesis. RESULTS: Compared to WT mice, both IL-37a and IL-37b transgenic mice had significant reduced airway hyperresponsiveness and the declined total numbers of inflammatory cells, predominant eosinophils into airways and lung tissues. Furthermore, all features of airways remodeling, including degrees of mucus expression, collagen deposition, hypertrophy of smooth muscles, thickness of airways and neovascularization markedly decreased in IL-37 transgenic mice compared with OVA-treated WT mice. CONCLUSION: Our data suggest that both IL-37a and IL-37b isoforms are able to not only ameliorate airways inflammation and airways hyperresponsiveness, but also greatly reduce airways structural changes of animal models of chronic asthma.


Assuntos
Asma , Hipersensibilidade Respiratória , Camundongos , Humanos , Animais , Ovalbumina , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Asma/metabolismo , Pulmão/metabolismo , Inflamação/patologia , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Colágeno/efeitos adversos , Colágeno/metabolismo , Hipertrofia/metabolismo , Hipertrofia/patologia , Isoformas de Proteínas , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Líquido da Lavagem Broncoalveolar
2.
Environ Sci Technol ; 57(49): 20647-20656, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033251

RESUMO

The mechanism of sulfate formation during winter haze events in North China remains largely elusive. In this study, the multiple sulfur isotopic composition of sulfate in different grain-size aerosol fractions collected seasonally from sampling sites in rural, suburban, urban, industrial, and coastal areas of North China are used to constrain the mechanism of SO2 oxidation at different levels of air pollution. The Δ33S values of sulfate in aerosols show an obvious seasonal variation, except for those samples collected in the rural area. The positive Δ33S signatures (0‰ < Δ33S < 0.439‰) observed on clean days are mainly influenced by tropospheric SO2 oxidation and stratospheric SO2 photolysis. The negative Δ33S signatures (-0.236‰ < Δ33S < ∼0‰) observed during winter haze events (PM2.5 > 200 µg/m3) are mainly attributed to SO2 oxidation by H2O2 and transition metal ion catalysis (TMI) in the troposphere. These results reveal that both the H2O2 and TMI pathways play critical roles in sulfate formation during haze events in North China. Additionally, these new data provide evidence that the tropospheric oxidation of SO2 can produce significant negative Δ33S values in sulfate aerosols.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Sulfatos , Peróxido de Hidrogênio , Isótopos de Enxofre/análise , China , Óxidos de Enxofre , Estações do Ano , Aerossóis/análise , Monitoramento Ambiental , Material Particulado/análise
3.
J Environ Manage ; 345: 118883, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683383

RESUMO

Legacy phosphorus (P) in watersheds continuously affects the water quality. The time lag between anthropogenic P input and algal bloom has made P dynamics prediction in aquatic ecosystems more challenging. Whether the legacy P in the Yangtze River Watershed (YRW) exceeds its storage threshold remains unknown, and the continuous impact of legacy P on the water quality has not been analyzed. This study aimed to evaluate variation trends (1970-2018) and influencing factors for accumulated P in the YRW under different economic development periods, quantitatively identify the watershed P storage threshold based on the two split line models and estimate the time required for the return of legacy P to the baseline level using an exponential decay process. The results showed that the P storage threshold of the YRW was surpassed due to intense anthropogenic activities, and the residual P still had an impact on aquatic ecosystems for a long time. The dissolved total P loadings may become the top priority to achieve better P management goals. The time lags for the legacy P restoration would require for about 1000 years to be exhausted. The legacy P in the YRW would continuously undermine the restoration efforts of the water quality. The combined effects of watershed P surplus reductions and depletion of residual P may become essential to better manage P in the future. We still need to strengthen our efforts to make soil legacy P more absorbed by crops and improve sewage treatment capacity to achieve sustainable development of YRW.


Assuntos
Efeitos Antropogênicos , Ecossistema , Produtos Agrícolas , Desenvolvimento Econômico , Fósforo
4.
Ecotoxicol Environ Saf ; 195: 110436, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32182527

RESUMO

Sediment is the most dominant reservoir of organic pollutants in the aquatic environment. Understanding carbon and nitrogen sources in sediments and factors that controls distribution enhances our understanding of biogeochemical cycles of carbon and nitrogen. Different end-members and surface sediments of rivers and sediments profiles of lakes were collected. The concentrations of TOC and TON and their δ13C and δ15N were studied for qualitative and quantitative analysis of natural and anthropogenic sources. The results show that TOC and TON concentrations of the sediments from rivers range from 0.63% to 10.83% and 0.06%-0.86%, respectively, indicating substantial great environmental risks in these rivers. The concentrations of TOC and TON for the four sediment profiles below the 5 cm, increase in the order of Miyun < Chuidiao < Qunming < Houhai, as influenced by their respective environment condition. Moreover, water quality was quite good and there was no risk of eutrophication in Miyun reservoir. δ13Corg and δ15Norg in surface sediments of the studied 18 rivers range from -27.2‰ to -24.9‰ and -2.2‰ to +10.9‰, respectively. Based on a simple δ13C-based end-member mixing and a C/N ratio model, organic matter in the surface sediments of these rivers were mainly derived from sewage and C3 plant. In addition, the sources of organic matter differed in each layer of the four sediment profiles. This study provides a reliable method for qualitative and quantitative identification of the source of organic matter in sediments, and offers theoretical basis for better management of rivers and lakes.


Assuntos
Carbono/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Lagos/química , Nitrogênio/análise , Rios/química , Poluentes Químicos da Água/análise , Isótopos de Carbono , Eutrofização , Isótopos de Nitrogênio , Compostos Orgânicos/análise , Esgotos/análise , Qualidade da Água/normas
5.
Ecotoxicol Environ Saf ; 174: 1-11, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30802672

RESUMO

Cadmium (Cd) pollution of the soil is an important global environmental issue owing to its great toxicity. The study of metal isotope fractionation is a novel technique that could be used to identify and quantify metal uptake and transport mechanisms in plant. In this study, cadmium tolerant Ricinus communis and hyperaccumulator Solanum nigrum have been cultured in different Cd concentration nutrient solutions. The Cd isotope values, metal elements concentrations in the organs (root, stem and leaf) in the two plant species have been measured during the growth periods (10d, 15d, 20d, 25d, and 30d). The results indicate that the organs of S. nigrum could be enriched with lighter Cd isotopes compared with R. communis. In addition, the Cd isotope fractionation become smaller when the plants were subjected to high Cd toxicity, which indicates that Cd isotope fractionation reflected the extent of Cd toxicity to plants. This study advances our current view of Cd translocation machination in plants.


Assuntos
Cádmio/metabolismo , Ricinus/metabolismo , Poluentes do Solo/metabolismo , Solanum nigrum/metabolismo , Transporte Biológico , Cádmio/toxicidade , Isótopos , Ricinus/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solanum nigrum/efeitos dos fármacos
6.
Nanotechnology ; 28(21): 215206, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28383288

RESUMO

An enhanced nonlinear optical (NLO) performance was observed in Se-doped MoS2 nanosheets synthesized through a facile annealing process. Se-doped MoS2 nanosheets with a large saturable intensity and high modulation depth generated stable passively Q-switched fiber laser pulses at 1559 nm. In comparison with the Q-switched fiber laser utilizing the pristine MoS2 nanosheets as a saturable absorber, the passive Q-switching operation based on Se-doped MoS2 nanosheets could be conducted at a lower threshold power of 50 mW, a wider range of repetition rates from 28.97 to 130 kHz, and a higher SNR of 56 dB. More importantly, the shortest pulse duration of 1.502 µs was realized and the output power and pulse energy reached 17.2 mW and 133.07 nJ, respectively. These results indicate that tailoring the chemical composition of optical nanomaterials by introducing a dopant is a feasible method of improving the NLO response of the MoS2 nanosheets and realizing excellent ultrafast pulse generation.

7.
Environ Sci Technol ; 51(14): 7794-7803, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28605583

RESUMO

Recently air pollution is seriously threatening the health of millions of people in China. The multiple sulfur isotopic composition of sulfate in PM2.5 samples collected in Beijing is used to better constrain potential sources and formation processes of sulfate aerosol. The Δ33S values of sulfate in PM2.5 show a pronounced seasonality with positive values in spring, summer and autumn and negative values in winter. Positive Δ33S anomalies are interpreted to result from SO2 photolysis with self-shielding, and may reflect air mass transport between the troposphere and the stratosphere. The negative Δ33S signature (-0.300‰ < Δ33S < 0‰) in winter is possibly related to incomplete combustion of coal in residential stoves during the heating season, implying that sulfur dioxide released from residential stoves in more rural areas is an important contributor to atmospheric sulfate. However, negative Δ33S anomalies (-0.664‰ < Δ33S ← 0.300‰) in winter and positive Δ33S anomalies (0.300‰ < Δ33S < 0.480‰) in spring, summer, and autumn suggest sulfur isotopic equilibrium on an annual time frame, which may provide an implication for the absence of mass-independent fractionation of sulfur isotopes (S-MIF) in younger sediments. Results obtained here reveal that reducing the usage of coal and improving the heating system in rural areas will be important for efficiently decreasing the emissions of sulfur in China and beyond.


Assuntos
Aerossóis , Poluentes Atmosféricos , Monitoramento Ambiental , Isótopos de Enxofre , Pequim , China , Humanos , Material Particulado , Sulfatos
8.
Biochem Biophys Res Commun ; 474(1): 51-56, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27086113

RESUMO

E3 ubiquitin ligases are pivotal effectors of the ubiquitin-proteasome system as they determine the substrate specificity and transfer ubiquitin to the substrate. HECT-type ubiquitin ligase Smad ubiquitination regulatory factor 2 (Smurf2) has been demonstrated functions as a tumor suppressor. However, the mechanisms underlying regulation of Smurf2 is still unclear. Here we show that ubiquitin-like protein Nedd8 targets the HECT-type ubiquitin ligase Smurf2 for neddylation, and promotes Smurf2 degradation. Neddylation of Smurf1 activates its ubiquitin ligase activity and Smurf2 exerts Nedd8 ligase activity. This study provided new clues of Smurf2 activation regulation.


Assuntos
Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Ubiquitinas/metabolismo , Ativação Enzimática , Células HEK293 , Humanos , Proteína NEDD8
9.
Opt Express ; 24(22): 25337-25344, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828472

RESUMO

Vertical layered MoS2 nanosheets rooting into TiO2 nanofibers were successfully prepared by a facile two-step method: prefabrication of porous TiO2 nanofibers based on an electrospinning technique, and assembly of MoS2 ultrathin nanosheets through a simple hydrothermal reaction. Significant enhancement of nonlinear optical response of the MoS2/TiO2 nanocomposite was confirmed by an open-aperture z-scan measurement. The nanocomposite displayed strong optical limiting (OL) effects to ultrafast laser pulses with a low OL threshold of ~22.3 mJ/cm2, which is lower than that of pristine TiO2 nanofibers and MoS2 nanosheets. In addition to the contribution of the strong nonlinear absorption of MoS2 nanosheets and TiO2 nanofibers, such phenomenon is also attributed to the unique structure of vertically standing layered MoS2 nanosheets on TiO2 nanofibers with a large amount of exposed edge states, large surface areas and fast electron transfer between TiO2 and MoS2. This work broadens our vision to engineering novel hierarchical MoS2-based nanocomposite for efficiently enhanced nonlinear light-matter interaction.

10.
Nanotechnology ; 27(30): 305203, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27319573

RESUMO

High-yield MoS2 nanosheets with strong nonlinear optical (NLO) responses in a broad near-infrared range were synthesized by a facile hydrothermal method. The observation of saturable absorption, which was excited by the light with photon energy smaller than the gap energy of MoS2, can be attributed to the enhancement of the hybridization between the Mo d-orbital and S p-orbital by the oxygen incorporation into MoS2. High-yield MoS2 nanosheets with high modulation depth and large saturable intensity generated a stable, passively Q-switched fiber laser pulse at 1.56 µm. The high output power of 1.08 mW can be attained under a very low pump power of 30.87 mW. Compared to recently reported passively Q-switched fiber lasers utilizing exfoliated MoS2 nanosheets, the efficiency of the laser for our passive Q-switching operation is larger and reaches 3.50%. This research may extend the understanding on the NLO properties of MoS2 and indicate the feasibility of the high-yield MoS2 nanosheets to passively Q-switched fiber laser effectively at low pump strengths.

11.
Ecotoxicol Environ Saf ; 128: 206-12, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26946285

RESUMO

Human activities have resulted in lead and sulfur accumulation in paddy soils in parts of southern China. A combined soil-sand pot experiment was conducted to investigate the influence of S supply on iron plaque formation and Pb accumulation in rice (Oryza sativa L.) under two Pb levels (0 and 600 mg kg(-1)), combined with four S concentrations (0, 30, 60, and 120 mg kg(-1)). Results showed that S supply significantly decreased Pb accumulation in straw and grains of rice. This result may be attributed to the enhancement of Fe plaque formation, decrease of Pb availability in soil, and increase of reduced glutathione (GSH) in rice leaves. Moderate S supply (30 mg kg(-1)) significantly increased Fe plaque formation on the root surface and in the rhizosphere, whereas excessive S supply (60 and 120 mg kg(-1)) significantly decreased the amounts of iron plaque on the root surface. Sulfur supply significantly enhanced the GSH contents in leaves of rice plants under Pb treatment. With excessive S application, the rice root acted as a more effective barrier to Pb accumulation compared with iron plaque. Excessive S supply may result in a higher monosulfide toxicity and decreased iron plaque formation on the root surface during flooded conditions. However, excessive S supply could effectively decrease Pb availability in soils and reduce Pb accumulation in rice plants.


Assuntos
Ferro/análise , Chumbo/toxicidade , Oryza/efeitos dos fármacos , Poluentes do Solo/toxicidade , Enxofre/toxicidade , Biomassa , China , Relação Dose-Resposta a Droga , Chumbo/metabolismo , Oryza/química , Oryza/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Rizosfera , Solo/química , Poluentes do Solo/metabolismo , Enxofre/metabolismo
12.
Opt Express ; 23(10): 13376-83, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-26074587

RESUMO

Topological insulator (TI) Bi2SeTe2 nanosheets with very regular hexagonal morphology were synthesized by a hydrothermal route. Open aperture (OA) z-scan method was performed to measure the saturable absorption (SA) characteristics of the as-prepared TI Bi2SeTe2 nanosheets. The measured modulation depth, saturation intensity and nonsaturable loss of the sample were 61.9%, 4.46 GW/cm2 and 4.5% respectively. An ultrafast intraband scattering time of ~50 fs was obtained through simulating the SA curve, which indicates the TI Bi2SeTe2 nanosheets may be a good candidate for mode-locking material.

13.
Yi Chuan ; 37(1): 1-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25608807

RESUMO

The development of mammalian kidney is a complex process. The reciprocal inductive interactions between epithelial cells and metanephric mesenchymal cells determine cell fates including proliferation, growth, apoptosis, and eventually contribute to the formation of an intact kidney. Multiple signaling pathways, including the GDNF/Ret, Wnt and BMP signaling pathways, have been shown to regulate the development of kidney. A myriad of signaling pathways and their cross-talks form a precise spatiotemporal regulatory network, which ensures the kidney to be properly organized. In this review, we summarize the physiological process of kidney development as well as the involved signaling pathways and their interplay.


Assuntos
Rim/crescimento & desenvolvimento , Rim/metabolismo , Transdução de Sinais , Animais , Humanos , Organogênese , Proteínas/metabolismo
14.
J Biol Chem ; 288(50): 35637-50, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24163370

RESUMO

NEDD4-like ubiquitin ligase 2 (NEDL2) is a HECT type ubiquitin ligase. NEDL2 enhances p73 transcriptional activity and degrades ATR kinase in lamin misexpressed cells. Compared with the important functions of other HECT type ubiquitin ligase, there is less study concerning the function and regulation of NEDL2. Using primary antibody immunoprecipitation and mass spectrometry, we identify a list of potential proteins that are putative NEDL2-interacting proteins. The candidate list contains many of mitotic proteins, especially including several subunits of anaphase-promoting complex/cyclosome (APC/C) and Cdh1, an activator of APC/C. Cdh1 can interact with NEDL2 in vivo and in vitro. Cdh1 recognizes one of the NEDL2 destruction boxes (R(740)GSL(743)) and targets it for degradation in an APC/C-dependent manner during mitotic exit. Overexpression of Cdh1 reduces the protein level of NEDL2, whereas knockdown of Cdh1 increases the protein level of NEDL2 but has no effect on the NEDL2 mRNA level. NEDL2 associates with mitotic spindles, and its protein level reaches a maximum in mitosis. The function of NEDL2 during mitosis is essential because NEDL2 depletion prolongs metaphase, and overexpression of NEDL2 induces chromosomal lagging. Elevated expression of NEDL2 protein and mRNA are both found in colon cancer and cervix cancer. We conclude that NEDL2 is a novel substrate of APC/C-Cdh1 as cells exit mitosis and functions as a regulator of the metaphase to anaphase transition. Its overexpression may contribute to tumorigenesis.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Anáfase , Caderinas/metabolismo , Metáfase , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Antígenos CD , Carcinogênese , Linhagem Celular , Aberrações Cromossômicas , Ativação Enzimática , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/genética , Fuso Acromático/metabolismo , Fatores de Tempo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
15.
J Environ Sci (China) ; 26(10): 2048-55, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25288549

RESUMO

To investigate the effects of Cd on tolerance and antioxidant activities of castor, two different castor (Ricinus communis L.) cultivars (Zibo No. 5 and Zibo No. 8) were used for a hydroponic experiment (0, 1 and 2mg/L Cd) and a pot experiment using Cd-contaminated soil (34mg/kg) with the addition of ethylenedinitrilotetraacetic acid (EDTA). The results indicated that there were significant differences between the two cultivars with respect to Cd uptake in shoots (113-248mg/kg for Zibo No. 5 and 130-288mg/kg Zibo No. 8), biomass tolerance indexes (64.9%-74.6% for Zibo No. 5 and 80.1%-90.9% for Zibo No. 8) in the hydroponic experiment and survival rates (0% for Zibo No. 5 and 100% for Zibo No. 8) determined by the addition of EDTA in the pot experiment, suggesting that Zibo No. 8 has higher tolerance than Zibo No. 5. Moreover, the castor cultivars have low bioconcentration factors (4.80% for Zibo No. 5 and 5.43% for Zibo No. 8) and low translocation factors (<1%). Consequently, Zibo No. 8 can participate in Cd phytostabilization in highly Cd-polluted areas. The results indicated that glutathione (GSH) as a non-enzymatic antioxidant, and antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GPX), were cultivar- and dose-dependent. The higher tolerance of Zibo No. 8 compared with Zibo No. 5 can be attributed to the higher GSH levels in the root and higher GPX activity in the leaf.


Assuntos
Adaptação Fisiológica , Antioxidantes/metabolismo , Cádmio/metabolismo , Ricinus communis/metabolismo , Ricinus communis/crescimento & desenvolvimento , Ricinus communis/fisiologia
16.
J Hazard Mater ; 475: 134833, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880043

RESUMO

Lead (Pb) pollution in sediments remains a major concern for ecosystem quality due to the robust interaction at the sediment/water interface, particularly in shallow lakes. However, understanding the mechanism behind seasonal fluctuations in Pb mobility in these sediments is lacking. Here, the seasonal variability of Pb concentration and isotopic ratio were investigated in the uppermost sediments of a shallow eutrophic drinking lake located in southeast China. Results reveal a sharp increase in labile Pb concentration during autumn-winter period, reaching ∼ 3-fold higher levels than during the spring-summer seasons. Despite these fluctuations, there was a notable overlap in the Pb isotopic signatures within the labile fraction across four seasons, suggesting that anthropogenic sources are not responsible for the elevated labile Pb concentration in autumn-winter seasons. Instead, the abnormally elevated labile Pb concentration during autumn-winter was probably related to reduction dissolution of Fe/Mn oxides, while declined labile Pb concentration during spring-summer may be attributed to adsorption/precipitation of Fe/Mn oxides. These large seasonal changes imply the importance of considering seasonal effects when conducting sediment sampling. We further propose a solution that using Pb isotopic signatures within the labile fraction instead of the bulk sediment can better reflect the information of anthropogenic Pb sources.


Assuntos
Água Potável , Monitoramento Ambiental , Sedimentos Geológicos , Chumbo , Estações do Ano , Poluentes Químicos da Água , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Chumbo/análise , Poluentes Químicos da Água/análise , Água Potável/química , Água Potável/análise , Monitoramento Ambiental/métodos , Isótopos/análise , China , Lagos/química , Eutrofização
17.
Nat Commun ; 15(1): 4180, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755148

RESUMO

Computational super-resolution methods, including conventional analytical algorithms and deep learning models, have substantially improved optical microscopy. Among them, supervised deep neural networks have demonstrated outstanding performance, however, demanding abundant high-quality training data, which are laborious and even impractical to acquire due to the high dynamics of living cells. Here, we develop zero-shot deconvolution networks (ZS-DeconvNet) that instantly enhance the resolution of microscope images by more than 1.5-fold over the diffraction limit with 10-fold lower fluorescence than ordinary super-resolution imaging conditions, in an unsupervised manner without the need for either ground truths or additional data acquisition. We demonstrate the versatile applicability of ZS-DeconvNet on multiple imaging modalities, including total internal reflection fluorescence microscopy, three-dimensional wide-field microscopy, confocal microscopy, two-photon microscopy, lattice light-sheet microscopy, and multimodal structured illumination microscopy, which enables multi-color, long-term, super-resolution 2D/3D imaging of subcellular bioprocesses from mitotic single cells to multicellular embryos of mouse and C. elegans.


Assuntos
Caenorhabditis elegans , Microscopia de Fluorescência , Animais , Caenorhabditis elegans/embriologia , Microscopia de Fluorescência/métodos , Camundongos , Imageamento Tridimensional/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado Profundo
18.
Sci Total Environ ; 882: 163627, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37087010

RESUMO

Worldwide mining activities produce vast quantities of mine tailings, which pose a threat to soil quality, crop yields, and the regional environment in the adjacent agricultural soil, but little is known about the impact of mining activities on the SOM source and migration. In this study, soil samples of the topsoil (0-15 cm) and soil profiles (0-50 cm), as well as the potential sources samples (C3 plants, C4 plants and mining tailings) were collected from mine-contaminated karst farmland of four different pollution levels (NP, non-polluted; SP, slightly polluted; MP, moderately polluted; and HP, heavily polluted). Total organic carbon (TOC), total organic nitrogen (TON), and stable isotopic compositions (δ13Corg and δ15Norg) of soil and potential sources samples were determined. In the topsoil, the concentrations of TOC (1.9 ± 1.4 %) and TON (0.1 ± 0.1 %), and the value of δ13Corg (-25.4 ± 0.9 ‰) and δ15Norg (-3.6 ± 3.6 ‰), were not significantly different among HP, MP and SP farmland (P > 0.05). C3 plants (42.1 %-49.9 %) and mine tailings (32.3 %-40.1 %) were identified as the dominant source of topsoil SOM. In the soil profile, TOC%, TON%, δ13Corg, and δ15Norg were affected by soil depth and pollution level. TOC% and TON% in the soil profiles of NP changed slightly with soil depth, while that in the other soil profiles was decreased with the increasing of soil depth. The δ15Norg value in the SP soil dropped sharply when the soil depth was >15 cm, while that in the HP and MP soil was fluctuated and no obvious vertical pattern. Our findings provide valuable information regarding the impact of mining activities on SOM distribution and source apportionment in karst farmlands. The effects of mine tailings on SOM should be considered when the soil quality was estimated in the mine-grain composite area.

19.
J Hazard Mater ; 446: 130678, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608578

RESUMO

Taking Beijing-Tianjin-Hebei (BTH) with severe atmospheric mercury (Hg) and PM2.5 pollution as a typical region, this study clarified the characteristics and transboundary transport of atmospheric Particulate Bound Mercury (PBM2.5) affected by the East Asian monsoon. Five sampling sites were conducted in rural, suburban, urban, industrial, and coastal areas of BTH from northwest to southeast along the East Asian monsoon direction. PBM2.5 showed increasing concentrations from northwest to southeast and negative δ202Hg values, indicating significant contributions from anthropogenic sources. However, the mean Δ199Hg values of PBM2.5 at the five sites were significantly positive, probably triggered by the photoreduction of Hg(II) during long-range transport driven by the East Asian monsoon. Apart from local anthropogenic emissions as the primary sources, the transboundary transport of PBM2.5, driven by west and northwest air masses originating in Central Asia and Russia, contributed significantly to the PBM2.5 pollution of BTH. Moreover, these air masses reaching BTH would carry elevated PBM2.5 concentrations further transported to the ocean by the East Asian monsoon. In contrast, the southeast air masses transported from the ocean by the East Asian monsoon in summer diluted inland PBM2.5 pollution. This study provides insight into the atmospheric Hg circulation affected by the East Asian monsoon.

20.
Environ Pollut ; 316(Pt 1): 120619, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403873

RESUMO

Increasing industrial activity has led to a growing risk of arsenic (As) and cadmium (Cd) accumulations and biomagnifications in plants and humans. Arbuscular mycorrhizal fungi (AMF) have been extensively studied as a soil amendment owing to their capability to reduce the accumulation of As and Cd in plant tissues. However, a quantitative and data-based consensus has yet to be reached on the effect of AMF on As and Cd bioaccumulation and bioavailability. Here, a meta-analysis was conducted to quantitatively evaluate the impact of AMF using 1430 individual observations from 194 articles. The results showed that AMF inoculation caused a decrease in shoot and root As and Cd accumulation compared to control, and the reduction rates were affected by experimental duration, P fertilizer, AMF species, plant family, plant lifecycle, and soil properties. Intermediate experimental duration (lasting 56-112 days) and no P fertilizer favored AMF to reduce the shoot As and root Cd accumulation. Compared to other plant families, the reduction in As and Cd accumulation in legumes was the greatest, following AMF inoculation. The soils with alkaline, high organic carbon (OC), and low available phosphorus (AP) appeared to be more favorable for AMF to reduce As accumulation in plant tissues, while soils with low AP were more conducive to reducing the Cd accumulation in plant tissues. In addition, AMF inoculation increased pH (1.92%), OC (6.27%), easily-extractable glomalin-related soil protein (EE-GRSP) (29.36%), and total glomalin-related soil protein (T-GRSP) (29.99%), and reduced bioavailable As (0.52%) and Cd (2.35%) in soils compared to control. Overall, the meta-analysis provides valuable guidelines for the optimal use of AMF in different plant-soil systems.


Assuntos
Arsênio , Micorrizas , Poluentes do Solo , Humanos , Micorrizas/metabolismo , Cádmio/análise , Bioacumulação , Arsênio/análise , Fertilizantes/análise , Poluentes do Solo/análise , Disponibilidade Biológica , Solo/química , Raízes de Plantas/metabolismo , Fungos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA