RESUMO
Saliva is vital to oral health, fulfilling multiple functions in the oral cavity. Three pairs of major salivary glands and hundreds of minor salivary glands contribute to saliva production. The secretory acinar cells within these glands include two distinct populations. Serous acinar cells secrete a watery saliva containing enzymes, while mucous acinar cells secrete a more viscous fluid containing highly glycosylated mucins. Despite their shared developmental origins, the parotid gland (PG) is comprised of only serous acinar cells, while the sublingual gland (SLG) contains predominantly mucous acinar cells. The instructive signals that govern the identity of serous versus mucous acinar cell phenotypes are not yet known. The homeobox transcription factor Nkx2.3 is uniquely expressed in the SLG. Disruption of the Nkx2.3 gene was reported to delay the maturation of SLG mucous acinar cells. To examine whether Nkx2.3 plays a role in directing the mucous cell phenotype, we analyzed SLG from Nkx2.3-/- mice using RNAseq, immunostaining and proteomic analysis of saliva. Our results indicate that Nkx2.3, most likely in concert with other transcription factors uniquely expressed in the SLG, is a key regulator of the molecular program that specifies the identity of mucous acinar cells.
Assuntos
Proteômica , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Glândulas Salivares , Glândula Sublingual , Glândula Parótida , Proteínas de Homeodomínio/genéticaRESUMO
Advances in genomic technology led to a more focused pattern for the distribution of chromosomal proteins and a better understanding of their functions. The recent development of the CUT&RUN technique marks one of the important such advances. Here we develop a modified CUT&RUN technique that we termed nanoCUT&RUN, in which a high affinity nanobody to GFP is used to bring micrococcal nuclease to the binding sites of GFP-tagged chromatin proteins. Subsequent activation of the nuclease cleaves the chromatin, and sequencing of released DNA identifies binding sites. We show that nanoCUT&RUN efficiently produces high quality data for the TRL transcription factor in Drosophila embryos, and distinguishes binding sites specific between two TRL isoforms. We further show that nanoCUT&RUN dissects the distributions of the HipHop and HOAP telomere capping proteins, and uncovers unexpected binding of telomeric proteins at centromeres. nanoCUT&RUN can be readily applied to any system in which a chromatin protein of interest, or its isoforms, carries the GFP tag.
Assuntos
Proteínas de Drosophila , Drosophila , Animais , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Proteínas de Drosophila/metabolismo , Telômero/genética , Telômero/metabolismo , Fatores de Transcrição/genéticaRESUMO
With increasing stress in daily life and work, subhealth conditions induced by "Shi-Re Shanghuo" syndrome was gradually universal. "Huanglian Jiedu Wan" (HLJDW) was the first new syndrome Chinese medicine approved for the treatment of "Shi-Re Shanghuo" with promising clinical efficacy. Preliminary small-sample clinical studies have identified some notable biomarkers (succinate, 4-hydroxynonenal, etc.). However, the correlation and underlying mechanism between these biomarkers of HLJDW intervention on "Shi-Re Shanghuo" syndrome remained ambiguous. Therefore, this study was designed as a randomized, double-blind, multicenter, placebo-controlled Phase II clinical trial, employing integrated analysis techniques such as non-targeted and targeted metabolomics, salivary microbiota, proteomics, parallel peaction monitoring, molecular docking and surface plasmon resonance (SPR). The results of the correlation analysis indicated that HLJDW could mediate the balance between inflammation and immunity through succinate produced via host and microbial source to intervene "Shi-Re Shanghuo" syndrome. Further through the HIF1α/MMP9 pathway, succinate regulated downstream arachidonic acid metabolism, particularly the lipid peroxidation product 4-hydroxynonenal. Finally, an animal model of recurrent oral ulcers induced by "Shi-Re Shang Huo" was established and HLJDW was used for intervention, key essential indicators (succinate, glutamine, 4-hydroxynonenal, arachidonic acid metabolism) essential in the potential pathway HIF1α/MMP9 discovered in clinical practice were validated. The results were found to be consistent with our clinical findings. Taken together, succinate was observed as an important signal that triggered immune responses, which might serve as a key regulatory metabolic switch or marker of "Shi-Re Shanghuo" syndrome treated with HLJDW.
Assuntos
Medicamentos de Ervas Chinesas , Metaloproteinase 9 da Matriz , Animais , Ácido Araquidônico , Biomarcadores , Simulação de Acoplamento Molecular , Succinatos/uso terapêutico , Ácido Succínico , HumanosRESUMO
Segregation Distorter (SD) is a male meiotic drive system in Drosophila melanogaster. Males heterozygous for a selfish SD chromosome rarely transmit the homologous SD+ chromosome. It is well established that distortion results from an interaction between Sd, the primary distorting locus on the SD chromosome and its target, a satellite DNA called Rsp, on the SD+ chromosome. However, the molecular and cellular mechanisms leading to post-meiotic SD+ sperm elimination remain unclear. Here we show that SD/SD+ males of different genotypes but with similarly strong degrees of distortion have distinct spermiogenic phenotypes. In some genotypes, SD+ spermatids fail to fully incorporate protamines after the removal of histones, and degenerate during the individualization stage of spermiogenesis. In contrast, in other SD/SD+ genotypes, protamine incorporation appears less disturbed, yet spermatid nuclei are abnormally compacted, and mature sperm nuclei are eventually released in the seminal vesicle. Our analyses of different SD+ chromosomes suggest that the severity of the spermiogenic defects associates with the copy number of the Rsp satellite. We propose that when Rsp copy number is very high (> 2000), spermatid nuclear compaction defects reach a threshold that triggers a checkpoint controlling sperm chromatin quality to eliminate abnormal spermatids during individualization.
Assuntos
DNA Satélite/genética , Proteínas de Drosophila/genética , Proteínas Ativadoras de GTPase/genética , Espermatogênese/genética , Animais , Núcleo Celular/metabolismo , Cromatina/genética , Mapeamento Cromossômico , Segregação de Cromossomos , Cromossomos/genética , DNA Satélite/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas Ativadoras de GTPase/metabolismo , Genótipo , Masculino , Meiose , Mutação , Fenótipo , Espermátides/metabolismo , Espermatozoides/metabolismoRESUMO
Bailing capsule (BLC), a drug that is clinically administered to modulate the autoimmune system, exhibits promising therapeutic potential in the treatment of thyroiditis. This study elucidates the chemical profile of BLC and its potential therapeutic mechanism in thyroiditis, leveraging network pharmacology and molecular docking techniques. Utilizing ultra-high-performance liquid chromatography coupled with linear trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap MS), 58 compounds were identified, the majority of which were nucleosides and amino acids. Utilizing the ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC QqQ MS/MS) strategy, 16 representative active components from six batches of BLCs were simultaneously determined. Network pharmacology analysis further revealed that the active components included 5'-adenylate, guanosine, adenosine, cordycepin, inosine, 5'-guanylic acid, and l-lysine. Targets with higher connectivity included AKT1, MAPK3, RAC1, and PIK3CA. The signaling pathways primarily focused on thyroid hormone regulation and the Ras, PI3K/AKT, and MAPK pathways, all of which were intricately linked to inflammatory immunity and hormonal regulation. Molecular docking analysis corroborated the findings from network pharmacology, revealing that adenosine, guanosine, and cordycepin exhibited strong affinity toward AKT1, MAPK3, PIK3CA, and RAC1. Overall, this study successfully elucidated the material basis and preliminary mechanism underlying BLC's intervention in thyroiditis, thus laying a solid basis for further exploration of its in-depth mechanisms.
Assuntos
Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Tireoidite , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/análise , Tireoidite/tratamento farmacológico , Espectrometria de Massas em Tandem/métodos , Farmacologia em Rede , Transdução de Sinais/efeitos dos fármacos , HumanosRESUMO
This study explored the biosynthesis of bufadienolides(BDs) in Bufo bufo gargarizans to solve the dilemma of the decreasing resources of B. bufo gargarizans and provide a theoretical basis for the sustainable utilization of the resources. Ultra-high performance liquid chromatography-Orbitrap-mass spectrometry(UHPLC-Orbitrap-MS) was employed to detect the synthesis sites of BDs in B. bufo gargarizans, and the results were verified by desorption electrospray ionization-mass spectrometry imaging(DESI-MSI) and homogenate incubation experiments. BDs in B. bufo gargarizans had the highest content in the liver and the highest concentration in the gallbladder, in addition to the parotid gland and skin, which suggested that the liver could synthesize BDs. The results of DESI-MSI also showed that BDs were mainly enriched in the liver rather than the immature parotid gland. The incubation experiment of liver homogenates demonstrated the liver of B. bufo gargarizans had the ability to synthesize BDs. This study showed that the liver was a major organ for the synthesis of BDs in B. bufo gargarizans during metamorphosis, development, and growth, which provided strong theoretical support for the biosynthesis of BDs and the sustainable utilization of B. bufo gargarizans resources.
Assuntos
Bufanolídeos , Animais , Bufo bufo , Distribuição Tecidual , Bufonidae , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
Conventional tumor chemotherapy is limited by its low therapeutic efficacy and side effects, which severely hold back its further application. Drug delivery systems (DDSs) based on nanomaterials have attracted wide interest in cancer treatment; especially, the system can realize efficient synergistic therapies. Here, we designed a smart hydrogel drug delivery system with multiple responses to enhance the tumor treatment effect. By cross-linking oxidized hydroxypropyl cellulose with carboxymethyl chitosan, an injectable hydrogel was obtained, into which artesunate (ART), ferroferric oxide (Fe3O4) nanoparticles, and black phosphorus nanosheets (BPs) were preloaded. This DDS has multiple functions including magnetic targeting, pH sensitivity, chemodynamic therapy, and photothermal response. This nanoparticle-composited hydrogel not only preserved excellent rheological properties but also allowed for an accurate stable drug release at tumor sites and synergistic effects of multiple therapies. The in vitro and in vivo experiments revealed that this DDS could efficiently eliminate the HepG2 tumor with good biocompatibility. Taken together, this study clarifies the possible antitumor mechanism of this ART-loaded nanoparticle-composited hydrogel and provides a new strategy for synergistic photothermal-chemo-chemodynamic therapy.
Assuntos
Nanopartículas , Neoplasias , Humanos , Doxorrubicina/química , Hidrogéis/química , Microambiente Tumoral , Neoplasias/tratamento farmacológico , Nanopartículas/química , Fenômenos Magnéticos , Linhagem Celular TumoralRESUMO
This study aims to establish the ultra-performance liquid chromatography(UPLC) fingerprint and multi-indicator quantitative analysis method for Schisandrae Sphenantherae Fructus(SSF) and to screen out the potential quality markers(Q-markers) of hepatoprotection based on network pharmacology. The similarity analysis was performed using the Chinese Medicine Chromatographic Fingerprint Similarity Evaluation System, which showed that the similarity of the fingerprints of 15 samples from different regions ranged from 0.981 to 0.998. Eighteen common components were identified, from which 3 differential components were selected by cluster analysis and principal component analysis. The "component-target-pathway" network was built to predict the core components related to the hepatoprotective effects. Fourteen core components were screened by network pharmacology. They acted on the targets such as AKT1, CCND1, CYP1A1, CYP3A4, MAPK1, MAPK3, NOS2, NQO1, and PTGS2 to regulate the signaling pathways of lipid metabolism and atherosclerosis, hepatitis B, interleukin-17, and tumor necrosis factor. Considering the chemical measurability, characteristics, and validity, schisantherin A, anwulignan, and schisandrin A were identified as the Q-markers. The content of schisantherin A, anwulignan, and schisandrin A in the test samples were 0.20%-0.57%, 0.13%-0.33%, and 0.42%-0.70%, respectively. Combining the fingerprint, network pharmacology, and content determination, this study predicted that schisantherin A, anwulignan, and schisandrin A were the Q-markers for the hepatoprotective effect of SSF. The results can provide reference for improving the quality evaluation standard and exploring the hepatoprotective mechanism of SSF.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Schisandra , Schisandra/química , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológicoRESUMO
This study aims to reveal the endogenous metabolic characteristics of acteoside in the young rat model of purinomycin aminonucleoside nephropathy(PAN) by non-targeted urine metabolomics and decipher the potential mechanism of action. Biochemical indicators in the urine of rats from each group were determined by an automatic biochemical analyzer. The potential biomarkers and related core metabolic pathways were identified by ultra-high performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS) combined with principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). MetaboAnalyst 5.0 was used to establish the receiver operating characteristic(ROC) curve for evaluating the clinical diagnostic performance of core metabolites. The results showed that acteoside significantly decreased urinary protein-to-creatinine ratio in PAN young rats. A total of 17 differential metabolites were screened out by non-targeted urine metabolomics in PAN young rats and they were involved in phenylalanine metabolism and phenylalanine, tyrosine and tryptophan biosynthesis. Thirtten differential metabolites were screened by acteoside intervention in PAN young rats, and they were involved in phenylalanine metabolism and arginine and proline metabolism. Among them, leucylproline and acetophenone were the differential metabolites that were significantly recovered after acteoside treatment. These pathways suggest that acteoside treats PAN in young rats by regulating amino acid metabolism. The area under the curve of two core biomarkers, leucylproline and acetophenone, were both greater than 0.9. In summary, acteoside may restore amino acid metabolism by regulating endogenous differential metabolites in PAN young rats, which will help to clarify the mechanism of acteoside in treating chronic glomerulonephritis in children. The characteristic biomarkers screened out have a high diagnostic value for evaluating the treatment of chronic glomerulonephritis in children with acteoside.
Assuntos
Glomerulonefrite , Puromicina Aminonucleosídeo , Humanos , Criança , Ratos , Animais , Metabolômica/métodos , Biomarcadores/urina , Cromatografia Líquida de Alta Pressão/métodos , Acetofenonas , Fenilalanina , AminoácidosRESUMO
A randomized, double-blind, placebo-controlled, multi-center phase â ¡ clinical trial design was used in this study to recruit subjects who were in line with the syndrome of excess heat and fire toxin, and were diagnosed as recurrent oral ulcers, gingivitis, and acute pharyngitis. A total of 240 cases were included and randomly divided into a placebo group and a Huanglian Jiedu Pills group. The clinical efficacy of Huanglian Jiedu Pills in treating the syndrome of excess heat and fire toxin was evaluated by using the traditional Chinese medicine(TCM) syndrome scale. Enzyme-linked immunosorbent assay(ELISA) was used to determine and evaluate the levels of adenosine triphosphate(ATP), 4-hydroxynonenal(4-HNE), and adrenocorticotropic hormone(ACTH) in plasma of the two groups before and after administration and to predict their application value as clinical biomarkers. The results showed that the disappearance rate of main symptoms in the Huanglian Jiedu Pills group was 69.17%, and that in the placebo group was 50.83%. The comparison between the Huanglian Jiedu Pills group and the placebo group showed that 4-HNE before and after administration was statistically significant(P<0.05). The content of 4-HNE in the Huanglian Jiedu Pills group decreased significantly after administration(P<0.05), but that in the placebo group had no statistical significance and showed an upward trend. After administration, the content of ATP in both Huanglian Jiedu Pills group and placebo group decreased significantly(P<0.05), indicating that the energy metabolism disorder was significantly improved after administration of Huanglian Jiedu Pills and the body's self-healing ability also alleviated the increase in ATP level caused by the syndrome of excess heat and fire toxin to a certain extent. ACTH in both Huanglian Jiedu Pills group and placebo group decreased significantly after administration(P<0.05). It is concluded that Huanglian Jiedu Pills has a significant clinical effect, and can significantly improve the abnormal levels of ATP and 4-HNE in plasma caused by the syndrome of excess heat and fire toxin, which are speculated to be the effective clinical biomarkers for Huanglian Jiedu Pills to treat the syndrome of excess heat and fire toxin.
Assuntos
Hormônio Adrenocorticotrópico , Temperatura Alta , Humanos , Medicina Tradicional Chinesa , Trifosfato de AdenosinaRESUMO
This study comprehensively analyzed the active components of Sanhan Huashi Formula using qualitative and quantitative mass spectrometry techniques, laying the foundation for understanding its pharmacological substance basis. UHPLC-LTQ-Orbitrap-MS and GC-MS technologies were used to analyze and identify the volatile and non-volatile components in Sanhan Huashi Formula. UHPLC-QQQ-MS/MS technology was used to simultaneously determine the content of 27 major active components in the formula. The results showed that 308 major chemical components were identified in Sanhan Huashi Formula, among which 60 compounds were identified by comparing with reference standards, mainly including alkaloids, flavonoids, coumarins, triterpenoid saponins, amino acids, and nucleosides. GC-MS technology preliminarily identified 52 volatile compounds, with γ-eudesmol and ß-eudesmol as the main components. The quantitative results demonstrated good linearity(r>0.99) for the 27 active components, indicating the stability, simplicity, and reliability of the established method. Among them, amygdalin, nodakenin, arecoline, ephedrine, and pseudoephedrine had relatively high content and were presumably the main pharmacologically active substances. In conclusion, this study systematically and comprehensively characterized the major chemical components and patterns in Sanhan Huashi Formula, providing a basis for understanding its pharmacological mechanisms and clinical applications.
Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Reprodutibilidade dos Testes , Medicamentos de Ervas Chinesas/químicaRESUMO
Centromeres are essential chromosomal regions that mediate kinetochore assembly and spindle attachments during cell division. Despite their functional conservation, centromeres are among the most rapidly evolving genomic regions and can shape karyotype evolution and speciation across taxa. Although significant progress has been made in identifying centromere-associated proteins, the highly repetitive centromeres of metazoans have been refractory to DNA sequencing and assembly, leaving large gaps in our understanding of their functional organization and evolution. Here, we identify the sequence composition and organization of the centromeres of Drosophila melanogaster by combining long-read sequencing, chromatin immunoprecipitation for the centromeric histone CENP-A, and high-resolution chromatin fiber imaging. Contrary to previous models that heralded satellite repeats as the major functional components, we demonstrate that functional centromeres form on islands of complex DNA sequences enriched in retroelements that are flanked by large arrays of satellite repeats. Each centromere displays distinct size and arrangement of its DNA elements but is similar in composition overall. We discover that a specific retroelement, G2/Jockey-3, is the most highly enriched sequence in CENP-A chromatin and is the only element shared among all centromeres. G2/Jockey-3 is also associated with CENP-A in the sister species D. simulans, revealing an unexpected conservation despite the reported turnover of centromeric satellite DNA. Our work reveals the DNA sequence identity of the active centromeres of a premier model organism and implicates retroelements as conserved features of centromeric DNA.
Assuntos
Centrômero/genética , Drosophila/genética , Retroelementos/genética , Animais , Proteína Centromérica A/genética , Cromatina/metabolismo , Elementos de DNA Transponíveis/genética , DNA Satélite/genética , Drosophila/embriologia , Proteínas de Drosophila/genética , Embrião não Mamífero/metabolismo , Genoma de Inseto , Sequências Repetidas Terminais/genéticaRESUMO
Quality evaluation of Chinese medicinal decoction pieces is vital for the development of the downstream industries, and is an important channel for implementing the strategy of "higher quality, higher price, and priority for the high quality" for traditional Chinese medicine. At the moment, the quality of Chinese medicinal decoction pieces is mainly evaluated based on chemical component examination. Considering the weak preliminary research foundation and poor research conditions, traditional experience-based evaluation is undervalued in the quality rating of Chinese medicinal decoction pieces. However, traditional experience is a summary of the quality of Chinese medicinal materials based on clinical experience, which thus can be a potential basis for the quality evaluation of the decoction pieces. It is a challenge in the evaluation of Chinese medicinal decoction pieces to objectify the traditional experience-based evaluation from multiple aspects such as chemistry, effect, and characterization via modern techniques. Therefore, this study developed the "experience-ingredients-activity-electronic sensing" evaluation system for Chinese medicinal decoction pieces on the basis of experience-based assessment, chemical ingredients that can truly reflect the traditional experience, biological effect assessment, and electronic sensory evaluation, which is expected to quantify the traditional experience of quality evaluation of Chinese medicinal decoction pieces via chemistry, biology, and sensory simulation. The evaluation system can serve as a reference for clinical experience-based quality evaluation of Chinese medicinal decoction pieces.
Assuntos
Medicamentos de Ervas Chinesas , China , Eletrônica , Medicina Tradicional Chinesa , Restrição FísicaRESUMO
To establish a method for the simultaneous determination of ellagic acid, quercetin, gallic acid, kaempferol, myricetin, tiliroside, salidroside, isoquercetin, chlorogenic acid, and quinic acid in the leaves, flowers, fruits, and roots of Loropetalum chinensis by ultra-performance liquid chromatography-tandem mass spectrometry, and provide references for the development and utilization of L. chinensis resources. The analysis was performed on the chromatographic column ACQUITY UPLC HSS T3(2.1 mm×100 mm, 1.8 µm) with a gradient mobile phase of acetonitrile-0.2% formic solution at the flow rate of 0.3 mL·min~(-1). Column temperature was 30 â and injection volume was 2 µL. Multiple reactive ion monitoring mode(MRM) was used in the negative ion ionization mode of electrospray ion source. The 10 active components had a good linear relationship, and the established method was stable, simple, and accurate. The 10 active components existed in different parts of L. chinensis, with significant different content. The main components in different parts of L. chinensis were polyphenols, with the highest content, followed by flavonoids. The content of 10 active components was generally high in flowers. Among them, the content of quinic acid was the highest, reaching 22.539 1 mg·g~(-1). This study elucidates the differences of active components in the same part and the different parts of L. chinensis, thereby providing basis for the research on the pharmacodynamic substances of L. chinensis and references for the comprehensive development and utilization of L. chinensis resources.
Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Ácido Quínico , Cromatografia Líquida , Medicamentos de Ervas Chinesas/químicaRESUMO
Satellite DNAs (satDNAs) are among the most dynamically evolving components of eukaryotic genomes and play important roles in genome regulation, genome evolution, and speciation. Despite their abundance and functional impact, we know little about the evolutionary dynamics and molecular mechanisms that shape satDNA distributions in genomes. Here, we use high-quality genome assemblies to study the evolutionary dynamics of two complex satDNAs, Rsp-like and 1.688 g/cm3, in Drosophila melanogaster and its three nearest relatives in the simulans clade. We show that large blocks of these repeats are highly dynamic in the heterochromatin, where their genomic location varies across species. We discovered that small blocks of satDNA that are abundant in X chromosome euchromatin are similarly dynamic, with repeats changing in abundance, location, and composition among species. We detail the proliferation of a rare satellite (Rsp-like) across the X chromosome in D. simulans and D. mauritiana. Rsp-like spread by inserting into existing clusters of the older, more abundant 1.688 satellite, in events likely facilitated by microhomology-mediated repair pathways. We show that Rsp-like is abundant on extrachromosomal circular DNA in D. simulans, which may have contributed to its dynamic evolution. Intralocus satDNA expansions via unequal exchange and the movement of higher order repeats also contribute to the fluidity of the repeat landscape. We find evidence that euchromatic satDNA repeats experience cycles of proliferation and diversification somewhat analogous to bursts of transposable element proliferation. Our study lays a foundation for mechanistic studies of satDNA proliferation and the functional and evolutionary consequences of satDNA movement.
Assuntos
DNA Satélite/genética , Drosophila melanogaster/genética , Drosophila simulans/genética , Evolução Molecular , Cromossomo X , Animais , EucromatinaRESUMO
Indolealkylamines(IAAs) are the main hydrophilic substances in toad skin, mainly including free N-methyl-5-hydroxytryptamine, bufotenine, bufotenidine, dehydrobufotenine, and binding bufothionine. In this study, the LPS-activated neutrophils were used to investigate the structure-activity relationship and anti-inflammatory mechanism of the above-mentioned five monomers from the toad skin in vitro. The neutrophils were divided into the control group, model group(1 µg·mL~(-1) LPS), positive drug group(100 µg·mL~(-1) indometacin), as well as the low-(50 µg·mL~(-1)), medium-(100 µg·mL~(-1)) and high-dose(200 µg·mL~(-1)) free N-methyl-5-hydroxytryptamine, bufotenine, bufotenidine, dehydrobufotenine, and binding bufothionine groups. The levels of IL-6, TNF-α and IL-1ß in the neutrophil supernatant of each group was measured by enzyme-linked immunosorbent assay(ELISA) after LPS stimulation, followed by the detection of apoptosis in each group after Annexin V/PI staining. The protein expression levels of caspase-3, Bax, Bcl-2, beclin1, LC3-I, and LC3-â ¡ were assayed by Western blot. The results showed that IAAs reduced the excessive secretion of inflammatory cytokines caused by LPS compared with the model group. Besides, the activity of each free IAAs(N-methyl-5-hydroxytryptamine, bufotenine, bufotenidine and dehydrobufotenine), especially bufotenine, was stronger than that of the binding bufothionine. As revealed by Annexin V/PI staining, LPS delayed the early apoptosis of neutrophils compared with the control group, while bufotenine promoted the apoptosis of neutrophils in a dose-dependent manner, which might be related to the elevated expression of apoptosis-related protein Bax/Bcl-2. In addition, LPS activated the autophagy pathways in neutrophils. This study confirmed the efficacy of IAAs in reducing the secretion of inflammatory cytokines in neutrophils induced by LPS for the first time. For instance, bufotenine exerts the anti-inflammatory effect possibly by inducing the apoptosis of neutrophils.
Assuntos
Lipopolissacarídeos , Neutrófilos , Animais , Anti-Inflamatórios/farmacologia , Apoptose , Bufonidae , Lipopolissacarídeos/toxicidade , PeleRESUMO
Tumor metastasis is still the leading cause of melanoma mortality. Luteolin, a natural flavonoid, is found in fruits, vegetables, and medicinal herbs. The pharmacological action and mechanism of luteolin on the metastasis of melanoma remain elusive. In this study, we investigated the effect of luteolin on A375 and B16-F10 cell viability, migration, invasion, adhesion, and tube formation of human umbilical vein endothelial cells. Epithelial-mesenchymal transition (EMT) markers and pivotal molecules in HIF-1α/VEGF signaling expression were analysed using western blot assays or quantitative real-time polymerase chain reaction. Results showed that luteolin inhibits cellular proliferation in A375 and B16-F10 melanoma cells in a time-dependent and concentration-dependent manner. Luteolin significantly inhibited the migratory, invasive, adhesive, and tube-forming potential of highly metastatic A375 and B16-F10 melanoma cells or human umbilical vein endothelial cells at sub-IC50 concentrations, where no significant cytotoxicity was observed. Luteolin effectively suppressed EMT by increased E-cadherin and decreased N-cadherin and vimentin expression both in mRNA and protein levels. Further, luteolin exerted its anti-metastasis activity through decreasing the p-Akt, HIF-1α, VEGF-A, p-VEGFR-2, MMP-2, and MMP-9 proteins expression. Overall, our findings first time suggests that HIF-1α/VEGF signaling-mediated EMT and angiogenesis is critically involved in anti-metastasis effect of luteolin as a potential therapeutic candidate for melanoma.
Assuntos
Inibidores da Angiogênese/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Luteolina/farmacologia , Melanoma/tratamento farmacológico , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Melanoma/secundário , Metástase Neoplásica/prevenção & controleRESUMO
Aristolochic acid I (AAI) was regarded as the major toxic component of aristolochic acid (AA). In addition to aristolochic acid nephropathy (AAN), liver cancers induced by AAI has aroused increasing attention recently. In this paper, the discovery of diagnostic biomarkers for AAI-induced liver injury has been studied, especially for the lipid markers. From the histopathological characteristics, the injury was observed clearly in the liver apart from the kidney after 30 mg/kg of AAΙ treatment for one week, while the lesion alleviated after AAΙ discontinuance. The serum biochemical indexes were manifested to the normal tendency after AAΙ discontinuance for two weeks. According to the evaluation of pathology slices and serum biochemical indexes, they indicated that the hepatotoxicity induced by AAΙ was reversible to some extent. A total of 44 lipid markers were identified in the liver, as well as 59 in the serum. Twenty-six common lipid markers were observed in both serum and liver. Furthermore, nine out of 26 lipids exhibited the excellent diagnostic ability to differentiate the control group from the AAΙ group and AAΙ discontinuance group with high sensitivity and specificity. The changed lipid markers might serve as characteristics to explain the mechanisms of pathogenesis and progression in hepatotoxicity induced by AAΙ.
Assuntos
Ácidos Aristolóquicos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Esquema de Medicação , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidômica/métodos , Fígado/metabolismo , Masculino , Análise de Componente Principal , Ratos , Ratos Sprague-Dawley , Sensibilidade e EspecificidadeRESUMO
The tea-like beverage Stevia rebaudiana Bertoni (Stevia) is popular in China because it reduces blood glucose and has a sweet taste. In this work, a comprehensive quality assessment of Stevia led to the discovery of five phenylethanoid glycosides, namely steviophethanoside (1), cuchiloside (2), salidroside (3), icariside D (4), and tyrosol (5). Of them, compound 1 is a novel compound. Mass spectrometry and NMR spectroscopy were employed to confirm the absolute configuration. A hydrolytic step with 4 N TFA at 95 °C for 4 h was used to confirm the monosaccharides. In addition, Discovery Studio 4.0 was used to predict the ADME and toxicity activity of compound 1. The results suggested that compound 1 was biocompatible and had poor toxicity, which was verified by rat INS-1 islet ß cells through an MTT assay. Meanwhile, a significant stimulatory effect on INS-1 cells was observed, which indicated a hypoglycemic effect of compound 1. This is the first report that describes a natural, novel, and hypoglycemic phenylethanoid glycoside in Stevia.
Assuntos
Glicosídeos/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Stevia/química , Animais , Células Cultivadas , China , Glicosídeos/química , Glicosídeos/isolamento & purificação , Células Secretoras de Insulina/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , RatosRESUMO
In order to find the endogenous potential biomarkers of in vitro hepatic injury caused by NCTD-Na and elucidate the mechanism of hepatic injury of NCTD-Na,ultra-high performance liquid chromatography coupled quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used for lipidomics detection.Multivariate statistical analysis was used to study the endogenous lipid metabolic changes of human normal liver cells LO2 injury after the treatment with sodium norcantharidate(NCTD-Na).The results showed that the half maximal inhibitory concentration(IC50) of NCTD-Na was 0.034 mmol·L-1.A total of 280 differential metabolites were found between the control group and the low-dose group,with VIP > 2.0 and P<0.05.At the same time,a total of 273 differential metabolites were found between the control group and the high-dose group,with VIP > 2.0 and P<0.05.Cell metabolite profiles showed clear separation among control group,the low-dose group and the high-dose group,and 111 differential metabolites were found,with VIP > 2.0,P<0.05,RSD<30% and in a dose-dependent manner.It was found that most of the above differential metabolites were lipid metabolites after the analysis of simple preparnation methods and database search.A total of 32 potential biomarkers were identified,including 3 phosphatidylcholine(PC),5 lysophosphatidylcholine(Lyso PC),3 ceramide(Cer),1 sphingomyelin(SM),1 phosphatidylethanolamine(PE),10 lysophosphatidylethanolamine(LysoPE),4 diacylglycerol(DG),1 Phosphatidic acid(PA),1 lysophosphatidic acid(Lyso PA),1 phosphatidyl glycerol(PG),1 fatty acid hydroxy fatty acid(FAHFA) and 1 phosphatidylserine(PS).The changes of PCs,Cers,SM,PE and DGs were closely related liver protection,DNA methylation and self-repair in hepatocytes,apoptosis,methylation and detoxification of carcinogens,as well as lipid peroxides production process.Also,they had impact on the proliferation of hepatocytes,differentiation and gene transcription disorders.Cells stimulated by NCTD-Na could promote the production of PA as well as the synthesis and catabolism of FAHFA in a variety of ways.The levels of Lyso PCs,LysoPEs and Lyso PA were correlated with PCs,PE and PA;PE and PS might have valgus during apoptosis,triggering phagocytosis.