Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 63(9): 1620-1631, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34331750

RESUMO

The creation of new soybean varieties has been limited by genomic duplication and redundancy. Efficient multiplex gene editing and large chromosomal segment deletion through clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems are promising strategies for overcoming these obstacles. CRISPR/Cpf1 is a robust tool for multiplex gene editing. However, large chromosomal excision mediated by CRISPR/Cpf1 has been reported in only a few non-plant species. Here, we report on CRISPR/LbCpf1-induced large chromosomal segment deletions in soybean using multiplex gene targeting. The CRISPR/LbCpf1 system was optimized for direct repeat and guide RNA lengths in crispr RNA (crRNA) array. The editing efficiency was evaluated using LbCpf1 driven by the CaMV35S and soybean ubiquitin promoter. The optimized system exhibited editing efficiencies of up to 91.7%. Our results showed eight gene targets could be edited simultaneously in one step when a single eight-gRNA-target crRNA array was employed, with an efficiency of up to 17.1%. We successfully employed CRISPR/LbCpf1 to produce small fragments (<1 Kb) and large chromosomal segment deletions (10 Kb-1 Mb) involving four different gene clusters in soybean. Together, these data demonstrate the power of the CRISPR/LbCpf1 platform for multiplex gene editing and chromosomal segment deletion in soybean, supporting the use of this technology in both basic research and agricultural applications.


Assuntos
Sequência de Bases , Sistemas CRISPR-Cas , Edição de Genes/métodos , Glycine max/genética , Deleção de Sequência
2.
Front Plant Sci ; 12: 731690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659297

RESUMO

Agrobacterium tumefaciens is a specialized plant pathogen that causes crown gall disease and is commonly used for Agrobacterium-mediated transformation. As a pathogen, Agrobacterium triggers plant immunity, which affects transformation. However, the signaling components and pathways in plant immunity to Agrobacterium remain elusive. We demonstrate that two Arabidopsis mitogen-activated protein kinase kinases (MAPKKs) MKK4/MKK5 and their downstream mitogen-activated protein kinases (MAPKs) MPK3/MPK6 play major roles in both Agrobacterium-triggered immunity and Agrobacterium-mediated transformation. Agrobacteria induce MPK3/MPK6 activity and the expression of plant defense response genes at a very early stage. This process is dependent on the MKK4/MKK5 function. The loss of the function of MKK4 and MKK5 or their downstream MPK3 and MPK6 abolishes plant immunity to agrobacteria and increases transformation frequency, whereas the activation of MKK4 and MKK5 enhances plant immunity and represses transformation. Global transcriptome analysis indicates that agrobacteria induce various plant defense pathways, including reactive oxygen species (ROS) production, ethylene (ET), and salicylic acid- (SA-) mediated defense responses, and that MKK4/MKK5 is essential for the induction of these pathways. The activation of MKK4 and MKK5 promotes ROS production and cell death during agrobacteria infection. Based on these results, we propose that the MKK4/5-MPK3/6 cascade is an essential signaling pathway regulating Agrobacterium-mediated transformation through the modulation of Agrobacterium-triggered plant immunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA