Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(24): 9917-9926, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38837181

RESUMO

Two-dimensional (2D) materials have been extensively implemented as surface-enhanced Raman scattering (SERS) substrates, enabling trace-molecule detection for broad applications. However, the accurate understanding of the mechanism remains elusive because most theoretical explanations are still phenomenological or qualitative based on simplified models and rough assumptions. To advance the development of 2D material-assisted SERS, it is vital to attain a comprehensive understanding of the enhancement mechanism and a quantitative assessment of the enhancement performance. Here, the microscopic chemical mechanism of 2D material-assisted SERS is quantitatively investigated. The frequency-dependent Raman scattering cross sections suggest that the 2D materials' SERS performance is strongly dependent on the excitation wavelengths and the molecule types. By analysis of the microscopic Raman scattering processes, the comprehensive contributions of SERS can be revealed. Beyond the widely postulated charge transfer mechanisms, the quantitative results conclusively demonstrate that the resonant transitions within 2D materials alone are also capable of enhancing the molecular Raman scattering through the diffusive scattering of phonons. Furthermore, all of these scattering routines will interfere with each other and determine the final SERS performance. Our results not only provide a complete picture of the SERS mechanisms but also demonstrate a systematic and quantitative approach to theoretically understand, predict, and promote the 2D materials SERS toward analytical applications.

2.
Angew Chem Int Ed Engl ; 63(8): e202315841, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38179848

RESUMO

Inherent "soft" ionic lattice nature of halide perovskite quantum dots (QDs), triggered by the weak Pb-X (X=Cl, Br, I) bond, is recognized as the primary culprit for their serious instability. A promising way is to construct exceedingly strong ionic interaction inside the QDs and increase their crystal cohesive energy by substituting the interior X- with highly electronegative F- , however, which is challenging and hitherto remains unreported. Here, a "whole-body" fluorination strategy is proposed for strengthening the interior bonding architecture of QDs, wherein the F- are uniformly distributed throughout the whole nanocrystal encompassing both the interior lattice and surface, successfully stabilizing their "soft" crystal lattice and passivating surface defects. This approach effectively mitigates their intrinsic instability issues including light-induced phase segregation. As a result, light-emitting devices based on these QDs exhibit exceptional efficiency and remarkable stability.

3.
Angew Chem Int Ed Engl ; 62(18): e202301684, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36867124

RESUMO

Exciton localization is an approach for preparing highly luminescent semiconductors. However, realizing strongly localized excitonic recombination in low-dimensional materials such as two-dimensional (2D) perovskites remains challenging. Herein, we first propose a simple and efficient Sn2+ vacancy (VSn ) tuning strategy to enhance excitonic localization in 2D (OA)2 SnI4 (OA=octylammonium) perovskite nanosheets (PNSs), increasing their photoluminescence quantum yield (PLQY) to ≈64 %, which is among the highest values reported for tin iodide perovskites. Combining experimental with first-principles calculation results, we confirm that the significantly increased PLQY of (OA)2 SnI4 PNSs is primarily due to self-trapped excitons with highly localized energy states induced by VSn . Moreover, this universal strategy can be applied for improving other 2D Sn-based perovskites, thereby paving a new way to fabricate diverse 2D lead-free perovskites with desirable PL properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA