Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(7): 1787-90, 2015 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-26717726

RESUMO

The main purpose of this paper is to investigate the optical properties of p-type ZnO film based on P doping. ZnO film was grown by Atomic layer deposition (ALD) on InP subsrate in this experiment, and phosphorus diffused into ZnO lattice by annealing treatment at different temperature (500, 700 °C). The optical properties of samples were investigated by photoluminescence (PL) spectroscopy, which indicated that the annealing temperature is the important factor influencing the phosphorus diffusion doping. The low-temperature PL spectra of the sample which annealed at 700 °C for 1 h exhibited acceptor related emission peaks located at 3.351, 3.311, 3.246 and 3.177 eV, which were attributed to A °X, FA, DAP and DA-1LO, respectively. The acceptor binding energy is estimated to be about 122 meV, which is agreed with the theoretic values in phosphorus-doped ZnO films. In this paper, through thermal diffusion method to realize the p-type doped ZnO thin films, it solved the main problems which limited the development of ZnO based optoelectronic devices, and has an important significance for the development of the ZnO semiconductor materials and ZnO based photoelectric device.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(7): 1789-92, 2014 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-25269281

RESUMO

In the present paper, we report the research on the effects of annealing temperature on the crystal quality and optical properties of ZnMgO films deposited by atom layer deposition(ALD). ZnMgO films were prepared on quartz substrates by ALD and then some of the samples were treated in air ambient at different annealing temperature. The effects of annealing temperature on the crystal quality and optical properties of ZnMgO films were characterized by X-ray diffraction (XRD), photoluminescence (PL) and ultraviolet-visible (UV-Vis) absorption spectra. The XRD results showed that the crystal quality of ZnMgO films was significantly improved when the annealing temperature was 600 degrees C, meanwhile the intensity of(100) diffraction peak was the strongest. Combination of PL and UV-Vis absorption measurements showed that it can strongly promote the Mg content increasing in ZnMgO films and increase the band gap of films. So the results illustrate that suitable annealing temperature can effectively improve the crystal quality and optical properties of ZnMgO films.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(9): 2355-9, 2014 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-25532325

RESUMO

In the present paper, MgxZn1-xO and MgxZn1-xO/Au/MgxZn1-xO multilayer structures of transparent conductive film were prepared by the simple operation of sol-gel and RF magnetron sputtering method on quartz substrate respectively and then they were annealed. The surface, electrical, crystal and optical properties of the films at different annealing temperature were determined by UV-Vis spectrophotometer, X-ray diffraction, photoluminescence and Hall effect, respectively. The influence of annealing temperature on the films was also investigated. The testing results indicated that the films with good c-axis orientation presented hexagonal wurtzite structure. With increasing Mg components, the optical band gap of ZnO thin film increased gradually. There was an obvious blue shift phenomenon in PL spectrum and absorption spectrum line. But the electrical properties of the films declined. In MgxZn1-xO/Au/MgxZn1-xO multilayer structure of thin film samples, the existence of Au interlining led to the poor optical properties of thin film, and the light transmittance in the ultraviolet region was 60%. Compared with MgxZn1-xO film, the electrical properties of MgxZn1-xO/Au/MgxZn1-xO multilayer structure of transparent conductive film were improved, the resistivity and migration rate were significantly increased. In addition, high temperature annealing treatment could effectively improve the crystal quality of thin film and further improve the electrical characteristics of the samples. After the annealing treatment at 500 °C, migration rate of the film reached to 40.9 cm2 · 1 Vs(-1) while the resistivity was 0.0057 Ω · cm. Due to the rising of temperature, the crystal size increased from 25.1 to 32.4 nm to reduce the mobility of the film. Therefore, MgxZn1-xO/Au/MgxZn1-xO multilayer structure of transparent conductive film played an important role in promoting the ZnO transparent conductive film application in deep ultraviolet devices.

4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(12): 3197-200, 2014 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-25881407

RESUMO

In the present paper, Mg(x)Zn(1-x)O nanofibers with different doping concentration were prepared by atom layer deposition (ALD) using polyvinyl pyrrolidone (PVP) nanofibers as template, which were synthesized by electrospinning. The influence of different Mg doping concentration on the structure and optical properties of composite nanofibers was investigated. The samples were characterized by field emission scanning electron microscopy (FESEM), ultraviolet visible (UV-Vis) absorption spectroscopy and photoluminescence (PL) spectra. The doping of Mg did not change the morphologies of ZnO nanofibers, the morphologies of all the samples were very similar while the diameter of Mg(x)Zn(1-x)O-PVP composite nanofibers became larger after doping. With the increase in the Mg doping concentration, the absorption edge shifted to larger energy side, revealing the band gap tenability of Mg(x)Zn(1-x)O nanofibers. Meanwhile, a significant blue shift of the UV emission peak from 377 to 362 nm was observed in PL spectra. Compared with ZnO-PVP composite nanofibers, the UV emission intensity of Mg(x)Zn(1-x)O-PVP composite nanofibers was much stronger. Component control Mg(x)Zn(1-x)O nanofibers can be synthesized by this method. The doping of Mg elements in ZnO can effectively improve the band gap of ZnO-PVP nanofibers and the intensity of UV emission.

5.
ACS Appl Mater Interfaces ; 16(8): 10398-10406, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38380978

RESUMO

The rapid evolution of the Internet of Things has engendered increased requirements for low-cost, self-powered UV photodetectors. Herein, high-performance self-driven UV photodetectors are fabricated by designing asymmetric metal-semiconductor-metal structures on the high-quality large-area CsCu2I3 microwire arrays. The asymmetrical depletion region doubles the photocurrent and response speed compared to the symmetric structure device, leading to a high responsivity of 233 mA/W to 355 nm radiation. Notably, at 0 V bias, the asymmetric device produces an open-circuit voltage of 356 mV and drives to a short-circuit current of 372 pA; meanwhile, the switch ratio (Iph/Idark) reaches up to 103, indicating its excellent potential for detecting weak light. Furthermore, the device maintains stable responses throughout 10000 UV-light switch cycles, with negligible degradation even after 90-day storage in air. Our work establishes that CsCu2I3 is a good candidate for self-powered UV detection and thoroughly demonstrates its potential as a passive device.

6.
Sci Total Environ ; 887: 164054, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37178848

RESUMO

Eutrophication can stimulate the emissions of volatile sulfur compounds (VSCs) accompanied by variations in environmental variables in lakes. However, the effects of eutrophication on VSC emissions from lake sediments as well as the underlying mechanisms remain unclear. In this study, depth gradient sediments at different eutrophication levels and seasons were collected from Lake Taihu to investigate the response of sulfur biotransformation in the sediments to eutrophication based on the analysis of environmental variables, microbial activity, abundance and community structure. H2S and CS2 were the main VSCs produced from the lake sediments, with the production rates of 2.3-7.9 and 1.2-3.9 ng g-1 h-1 in August, respectively, which were higher than those in March, mainly due to the increasing activity and abundance of sulfate-reducing bacteria (SRB) at high temperatures. The VSC production rates from the sediments increased with lake eutrophication level. Higher VSC production rates were detected in surface sediments in eutrophic regions but in deep sediments in oligotrophic regions. Sulfuricurvum, Thiobacillus and Sulfuricella were the main sulfur-oxidizing bacteria (SOB) in the sediments, while Desulfatiglans and Desulfobacca were the predominant SRB. Organic matter, Fe3+, NO3--N and total sulfur had significant influences on the microbial communities in the sediments. Partial least squares path modelling showed that the trophic level index could stimulate VSC emissions from lake sediments by influencing the activities and abundances of SOB and SRB. These findings indicated that sediments contributed substantially to VSC emissions from eutrophic lakes, especially surface sediments, and sediment dredging might be an effective way to mitigate VSC emissions from eutrophic lakes.


Assuntos
Desulfovibrio , Lagos , Lagos/microbiologia , Bactérias/metabolismo , Enxofre/metabolismo , Compostos de Enxofre/metabolismo , Eutrofização , Sedimentos Geológicos/química , China
7.
Adv Mater ; 35(21): e2300632, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36916201

RESUMO

Stacked 2D perovskites provide more possibilities for next generation photodetector with more new features. Compared with its excellent optoelectronic properties, the good dielectric performance of metal halide perovskite rarely comes into notice. Here, a bifunctional perovskite based photovoltaic detector capable of two wavelength demultiplexing is demonstrated. In the Black Phosphorus/Perovskite/MoS2 structured photodetector, the comprehensive utilization of the photosensitive and dielectric properties of 2D perovskite allows the device to work in different modes. The device shows normal continuous photoresponse under 405 nm, while it shows a transient spike response to visible light with longer wavelengths. The linear dynamic range, rise/decay time, and self-powered responsivity under 405 nm can reach 100, 38 µs/50 µs, and 17.7 mA W-1 , respectively. It is demonstrated that the transient spike photocurrent with long wavelength exposure is related to the illumination intensity and can coexist with normal photoresponse. Two waveband-dependent signals can be identified and used to reflect more information simultaneously. This work provides a new strategy for multispectral detection and demultiplexing, which can be used to improve data transfer rates and encrypted communications. This work mode can inspire more multispectral photodetectors with different stacked 2D materials, especially to the optoelectronic application of the wide bandgap, high dielectric photosensitive materials.

8.
Environ Pollut ; 306: 119435, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35550131

RESUMO

Eutrophic lakes are hot spots of CH4 and volatile sulfur compound (VSC) emissions, especially during algal blooms and decay. However, the response of CH4 and VSC emissions to lake eutrophication and algae growth as well as the underlying mechanisms remain unclear. In this study, the emissions of CH4 and VSCs from four regions of Lake Taihu with different eutrophic levels were investigated in four months (i.e., March, May, August and December). The CH4 emissions ranged from 20.4 to 126.9 mg m-2 d-1 in the investigated sites and increased with eutrophic levels and temperature. H2S and CS2 were the dominant volatile sulfur compounds (VSCs) emitted from the lake. The CH4 oxidation potential of water ranged from 2.1 to 14.9 µg h-1 L-1, which had positive correlations with trophic level index and the environmental variables except for the NH4+-N concentration. Eutrophic levels could increase the abundances of bacteria and methanotrophs in lake water. α-Proteobacteria methanotroph Methylocystis was more abundant than γ-Proteobacteria methanotrophs in March and May, while the latter was more abundant in August and November. The relative abundance of Cyanobacteria, including Microcystis, A. granulata var. angustissima and Cyanobium had significantly positive correlations with temperature, turbidity, SO42--S, and total sulfur. Partial least squares path modelling revealed that the algal growth could promote VSC emissions, which had a positive correlation with CH4 oxidation potential, likely due to the positive correlation between the CH4 and VSC emissions from lakes. These findings indicate that water eutrophication and algae growth could increase the emissions of CH4 and VSCs from lakes. Controlling algae growth might be an effective way to mitigate the emissions of CH4 and VSCs from freshwater lakes.


Assuntos
Cianobactérias , Lagos , China , Eutrofização , Lagos/microbiologia , Metano/análise , Compostos de Enxofre , Água
10.
ACS Appl Mater Interfaces ; 7(30): 16653-8, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26182428

RESUMO

We report alternative visible and ultraviolet light response spectra in a p-Cu2ZnSnS4 (p-CZTS)/n-GaN heterojunction photodiode. A CZTS film was deposited on an n-GaN/sapphire substrate using a magnetron sputtering method. Current-voltage characteristic of the p-CZTS/n-GaN heterojunction photodiode showed a good rectifying behavior. The spectral response measurements indicate that the response wavelength of the photodiode can be tuned from ultraviolet to visible regions via applying zero and reverse bias. A band alignment at the interface of the p-CZTS/n-GaN heterojunction was proposed to interpret the spectral response of the device.

11.
ACS Nano ; 4(8): 4785-91, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20614899

RESUMO

Although NiO is one of the canonical functional binary oxides, there has been no report so far on the effective fabrication of aligned single crystalline NiO nanowire arrays. Here we report a novel vapor-based metal-etching-oxidation method to synthesize high-quality NiO nanowire arrays with good vertical alignment and morphology control. In this method, Ni foils are used as both the substrates and the nickel source; NiCl(2) powder serves as the additional Ni source and provides Cl(2) to initiate mild etching. No template is deliberately employed; instead a nanograined NiO scale formed on the NiO foil guides the vapor infiltration and assists the self-assembled growth of NiO nanowires via a novel process comprising simultaneous Cl(2) etching and gentle oxidation. Furthermore, using CoO nanowires and Co-doped NiO as examples, we show that this general method can be employed to produce nanowires of other oxides as well as the doped counterparts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA