Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chaos ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558047

RESUMO

The action of wind and waves has a significant effect on the ship's roll, which can be a source of chaos and even capsize. The influence of random wave excitation is considered in order to investigate complex dynamic behavior by analytical and numerical methods. Chaotic rolling motions are theoretically studied in detail by means of the relevant Melnikov method with or without noise excitation. Numerical simulations are used to verify and analyze the appropriate parameter excitation and noise conditions. The results show that by changing the parameters of the excitation amplitude or the noise intensity, chaos can be induced or suppressed.

2.
Chaos ; 33(2): 023108, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36859207

RESUMO

Our objective is to investigate the innovative dynamics of piecewise smooth systems with multiple discontinuous switching manifolds. This paper establishes the coexistence of heteroclinic cycles in a class of 3D piecewise affine systems with three switching manifolds through rigorous mathematical analysis. By constructing suitable Poincaré maps adjacent to heteroclinic cycles, we demonstrate the occurrence of two distinct types of horseshoes and show the conditions for the presence of chaotic invariant sets. A family of attractors that satisfy the criteria are presented using this technique. It is shown that the outcomes of numerical simulation accurately reflect those of our theoretical results.

3.
Chaos ; 33(1): 013127, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36725632

RESUMO

Previous studies have shown that astrocytes are involved in information processing and working memory (WM) in the central nervous system. Here, the neuron-astrocyte network model with biological properties is built to study the effects of excitatory-inhibitory balance and neural network structures on WM tasks. It is found that the performance metrics of WM tasks under the scale-free network are higher than other network structures, and the WM task can be successfully completed when the proportion of excitatory neurons in the network exceeds 30%. There exists an optimal region for the proportion of excitatory neurons and synaptic weight that the memory performance metrics of the WM tasks are higher. The multi-item WM task shows that the spatial calcium patterns for different items overlap significantly in the astrocyte network, which is consistent with the formation of cognitive memory in the brain. Moreover, complex image tasks show that cued recall can significantly reduce systematic noise and maintain the stability of the WM tasks. The results may contribute to understand the mechanisms of WM formation and provide some inspirations into the dynamic storage and recall of memory.


Assuntos
Astrócitos , Memória de Curto Prazo , Memória de Curto Prazo/fisiologia , Cognição/fisiologia , Encéfalo , Neurônios
4.
Chaos ; 33(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748481

RESUMO

In the present study, we investigate the dynamic behavior of the fractional-order Bonhoeffer-van der Pol (BVP) oscillator. Previous studies on the integer-order BVP have shown that it exhibits mixed-mode oscillations (MMOs) with respect to the frequency of external forcing. We explore the effect of fractional-order on these MMOs and observe interesting phenomena. For fractional-order q1, we find that as we vary the frequency of external forcing, the system exhibits increasingly small amplitude oscillations. Eventually, as q1 decreases, the MMOs disappear entirely, indicating that lower fractional orders eliminate the presence of MMOs in the BVP oscillator. On the other hand, for the fractional-order q2, we observe more complex MMOs compared to q1. However, we find that the elimination of MMOs occurs with less variation from the integer order 1. Intriguingly, as we change q2, the fractional-order BVP oscillator undergoes a phenomenon known as a crisis, where the attractor expands and extreme events occur. Overall, our study highlights the rich dynamics of the fractional-order BVP oscillator and its ability to display various modes of oscillations and crises as the order is changed.

5.
Chaos ; 32(10): 103127, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36319280

RESUMO

The classical Melnikov method for heteroclinic orbits is extended theoretically to a class of hybrid piecewise-smooth systems with impulsive effect and noise excitation. We assume that the unperturbed system is a piecewise Hamiltonian system with a pair of heteroclinic orbits. The heteroclinic orbit transversally jumps across the first switching manifold by an impulsive effect and crosses the second switching manifold continuously. In effect, the trajectory of the corresponding perturbed system crosses the second switching manifold by applying the reset map describing the impact rule instantaneously. The random Melnikov process of such systems is then derived by measuring the distance of perturbed stable and unstable manifolds, and the criteria for the onset of chaos with or without noise excitation is established. In this derivation process, we overcome the difficulty that the derivation method of the corresponding homoclinic case cannot be directly used due to the difference between the symmetry of the homoclinic orbit and the asymmetry of the heteroclinic orbit. Finally, we investigate the complicated dynamics of a particular piecewise-smooth system with and without noise excitation under the reset maps, impulsive effect, and non-autonomous periodic and damping perturbations by this new extended method and numerical simulations. The numerical results verify the correctness of the theoretical results and demonstrate that this extended method is simple and effective for studying the dynamics of such systems.

6.
Chaos ; 32(7): 073119, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35907728

RESUMO

The Melnikov method is extended to a class of hybrid piecewise-smooth systems with impulsive effect and noise excitation when an unperturbed system is a piecewise Hamiltonian system with a homoclinic orbit. The homoclinic orbit continuously crosses the first switching manifold and transversally jumps across the second switching manifold by the impulsive effect. The trajectory of the corresponding perturbed system crosses the first switching manifold by applying the reset map describing the impact rule instantaneously. Then, the random Melnikov process of such systems is derived and the criteria for the onset of chaos with or without noise excitation are established. In addition, the complicated dynamics of concrete piecewise-smooth systems with or without noise excitation under the reset maps, impulsive effect, and non-autonomous periodic and damping perturbations are investigated by this extended method and numerical simulations.

7.
Nonlinear Dyn ; 109(1): 91-120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34803222

RESUMO

In view of the facts in the infection and propagation of COVID-19, a stochastic reaction-diffusion epidemic model is presented to analyse and control this infectious diseases. Stationary distribution and Turing instability of this model are discussed for deriving the sufficient criteria for the persistence and extinction of disease. Furthermore, the amplitude equations are derived by using Taylor series expansion and weakly nonlinear analysis, and selection of Turing patterns for this model can be determined. In addition, the optimal quarantine control problem for reducing control cost is studied, and the differences between the two models are compared. By applying the optimal control theory, the existence and uniqueness of the optimal control and the optimal solution are obtained. Finally, these results are verified and illustrated by numerical simulation.

8.
Nonlinear Dyn ; 109(2): 1187-1215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634246

RESUMO

The deadly outbreak of the second wave of Covid-19, especially in worst hit lower-middle-income countries like India, and the drastic rise of another growing epidemic of Mucormycosis, call for an efficient mathematical tool to model pandemics, analyse their course of outbreak and help in adopting quicker control strategies to converge to an infection-free equilibrium. This review paper on prominent pandemics reveals that their dispersion is chaotic in nature having long-range memory effects and features which the existing integer-order models fail to capture. This paper thus puts forward the use of fractional-order (FO) chaos theory that has memory capacity and hereditary properties, as a potential tool to model the pandemics with more accuracy and closeness to their real physical dynamics. We investigate eight FO models of Bombay plague, Cancer and Covid-19 pandemics through phase portraits, time series, Lyapunov exponents and bifurcation analysis. FO controllers (FOCs) on the concepts of fuzzy logic, adaptive sliding mode and active backstepping control are designed to stabilise chaos. Also, FOCs based on adaptive sliding mode and active backstepping synchronisation are designed to synchronise a chaotic epidemic with a non-chaotic one, to mitigate the unpredictability due to chaos during transmission. It is found that severity and complexity of the models increase as the memory fades, indicating that FO can be used as a crucial parameter to analyse the progression of a pandemic. To sum it up, this paper will help researchers to have an overview of using fractional calculus in modelling pandemics more precisely and also to approximate, choose, stabilise and synchronise the chaos control parameter that will eliminate the extreme sensitivity and irregularity of the models.

9.
Chaos ; 30(12): 123143, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33380050

RESUMO

In this article, we construct a kind of three-dimensional piecewise linear (PWL) system with three switching manifolds and obtain four theorems with regard to the existence of a homoclinic orbit and a heteroclinic cycle in this class of PWL system. The first theorem studies the existence of a heteroclinic cycle connecting two saddle-foci. The existence of a homoclinic orbit connecting one saddle-focus is investigated in the second theorem, and the third theorem examines the existence of a homoclinic orbit connecting another saddle-focus. The last one proves the coexistence of the heteroclinic cycle and two homoclinic orbits for the same parameters. Numerical simulations are given as examples and the results are consistent with the predictions of theorems.

10.
Chaos ; 29(10): 103101, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31675795

RESUMO

In this work, we investigate the numerical solution of the susceptible exposed infected and recovered measles epidemic model. We also evaluate the numerical stability and the bifurcation value of the transmission parameter from susceptibility to a disease of the proposed epidemic model. The proposed method is a chaos free finite difference scheme, which also preserves the positivity of the solution of the given epidemic model.


Assuntos
Epidemias , Sarampo/epidemiologia , Modelos Biológicos , Suscetibilidade a Doenças , Humanos , Dinâmica Populacional
11.
Chaos ; 27(3): 033101, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28364747

RESUMO

We report on the finding of hidden hyperchaos in a 5D extension to a known 3D self-exciting homopolar disc dynamo. The hidden hyperchaos is identified through three positive Lyapunov exponents under the condition that the proposed model has just two stable equilibrium states in certain regions of parameter space. The new 5D hyperchaotic self-exciting homopolar disc dynamo has multiple attractors including point attractors, limit cycles, quasi-periodic dynamics, hidden chaos or hyperchaos, as well as coexisting attractors. We use numerical integrations to create the phase plane trajectories, produce bifurcation diagram, and compute Lyapunov exponents to verify the hidden attractors. Because no unstable equilibria exist in two parameter regions, the system has a multistability and six kinds of complex dynamic behaviors. To the best of our knowledge, this feature has not been previously reported in any other high-dimensional system. Moreover, the 5D hyperchaotic system has been simulated using a specially designed electronic circuit and viewed on an oscilloscope, thereby confirming the results of the numerical integrations. Both Matlab and the oscilloscope outputs produce similar phase portraits. Such implementations in real time represent a new type of hidden attractor with important consequences for engineering applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA