Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chim Acta ; 998: 75-82, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29153089

RESUMO

Column chromatographic methods have been developed to separate no-carrier-added 111Ag from proton irradiated thorium targets and associated fission products as an ancillary process to an existing 225Ac separation design. Herein we report the separation of 111Ag both prior and subsequent to 225Ac recovery using CL resin, a solvent impregnated resin (SIR) that carries an organic solution of alkyl phosphine sulfides (R3P = S) and alkyl phosphine oxides (R3P = O). The recovery yield of 111Ag was 93 ± 9% with a radiochemical purity of 99.9% (prior) and 87 ± 9% with a radiochemical purity of 99.9% (subsequent to) 225Ac recovery. Both processes were successfully performed with insignificant impacts on 225Ac yields or quality. Measured equilibrium distribution coefficients for silver and ruthenium (a residual contaminant) on CL resin in hydrochloric and nitric acid media are reported, to the best of our knowledge, for the first time. Additionally, measured cross sections for the production of 111Ag and 110mAg for the 232Th(p,f)110m,111Ag reactions are reported within.


Assuntos
Actínio/química , Prótons , Prata/isolamento & purificação , Nanomedicina Teranóstica , Tório/química , Prata/química , Espectrometria gama
2.
PLoS One ; 12(12): e0190308, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29272318

RESUMO

Ruthenium-103 is the parent isotope of 103mRh (t1/2 56.1 min), an isotope of interest for Auger electron therapy. During the proton irradiation of thorium targets, large amounts of 103Ru are generated through proton induced fission. The development of a two part chemical separation process to isolate 103Ru in high yield and purity from a proton irradiated thorium matrix on an analytical scale is described herein. The first part employed an anion exchange column to remove cationic actinide/lanthanide impurities along with the majority of the transition metal fission products. Secondly, an extraction chromatographic column utilizing diglycolamide functional groups was used to decontaminate 103Ru from the remaining impurities. This method resulted in a final radiochemical yield of 83 ± 5% of 103Ru with a purity of 99.9%. Additionally, measured nuclear reaction cross sections for the formation of 103Ru and 106Ru via the 232Th(p,f)103,106Ru reactions are reported within.


Assuntos
Rênio/química , Radioisótopos de Rutênio/isolamento & purificação , Tório/isolamento & purificação , Prótons
3.
J Vis Exp ; (108): 53578, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26967145

RESUMO

Tissue scaffolds play a crucial role in the tissue regeneration process. The ideal scaffold must fulfill several requirements such as having proper composition, targeted modulus, and well-defined architectural features. Biomaterials that recapitulate the intrinsic architecture of in vivo tissue are vital for studying diseases as well as to facilitate the regeneration of lost and malformed soft tissue. A novel biofabrication technique was developed which combines state of the art imaging, three-dimensional (3D) printing, and selective enzymatic activity to create a new generation of biomaterials for research and clinical application. The developed material, Bovine Serum Albumin rubber, is reaction injected into a mold that upholds specific geometrical features. This sacrificial material allows the adequate transfer of architectural features to a natural scaffold material. The prototype consists of a 3D collagen scaffold with 4 and 3 mm channels that represent a branched architecture. This paper emphasizes the use of this biofabrication technique for the generation of natural constructs. This protocol utilizes a computer-aided software (CAD) to manufacture a solid mold which will be reaction injected with BSA rubber followed by the enzymatic digestion of the rubber, leaving its architectural features within the scaffold material.


Assuntos
Materiais Biocompatíveis/síntese química , Materiais Biomiméticos/síntese química , Colágeno/química , Hidrogéis/química , Impressão Tridimensional , Alicerces Teciduais/química , Animais , Bovinos , Técnicas de Química Sintética/métodos , Imageamento Tridimensional , Albumina Sérica/química , Software , Engenharia Tecidual/métodos
4.
J Nanosci Nanotechnol ; 16(6): 6383-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27427723

RESUMO

Platinum (Pt) nanocatalyst for a proton-exchange membrane fuel cell (PEMFC) was prepared on a carbon black particle or a graphite particle coated with a nafion polymer via a reduction of platinum(II) bis(acetylacetonate) denoted as Pt(acac)2 as a Pt precursor in a drying process. Sublimed Pt(acac)2 adsorbed on the nafion-coated carbon materials was reduced to Pt nanoparticles in a glass reactor at 180 degrees C of N2 atmosphere. The morphology of Pt nanoparticles on carbon materials was observed by scanning electron microscopy (SEM) and the distribution of Pt nanoparticles was done by transmission electron microscopy (TEM). The particle size was estimated by analyzing the TEM image using an image analyzer. It was found that nano-sized Pt particles were deposited on the surface of carbon materials, and the number density and the average particle size increased with increasing reduction time.

5.
Ann Biomed Eng ; 38(1): 109-17, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19862617

RESUMO

Heart valve defects are the most common cardiac defects. Therefore, defining the mechanisms of cardiac valve development is critical to our understanding and treatment of these disorders. At early stages of embryonic cardiac development, the heart begins as a simple tube that then becomes constricted into separate atrial and ventricular regions by the formation of small, mound-like structures, called atrioventricular (AV) cushions. As valve development continues, these mounds fuse and then elongate into valve leaflets. A longstanding hypothesis proposes that blood flow-generated shear stress and pressure are critical in shaping the cushions into leaflets. Here we show results from a two-dimensional mathematical model that simulates the forces created by blood flow present in a developing chick heart and in our in vitro, tubular model system. The model was then used to predict flow patterns and the resulting forces in the in vitro system. The model indicated that forces associated with shear stress and pressure have comparable orders of magnitude and collectively produce a rotational profile around the cushion in the direction of flow and leaflet growth. Further, it was concluded that the replication of these forces on a cushion implanted in our tubular in vitro system is possible. Overall, the two-dimensional, mathematical model provides insight into the forces that occur during early cardiac valve elongation.


Assuntos
Doenças das Valvas Cardíacas/fisiopatologia , Valvas Cardíacas/embriologia , Valvas Cardíacas/fisiopatologia , Modelos Cardiovasculares , Animais , Embrião de Galinha , Doenças das Valvas Cardíacas/patologia , Valvas Cardíacas/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA