Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 856(Pt 2): 159170, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36198349

RESUMO

Groundwater quality is of increasing concern due to the ubiquitous occurrence of micropollutant mixtures. Stream-groundwater interactions near agricultural and urban areas represent an important entry pathway of micropollutants into shallow aquifers. Here, we evaluated the biotransformation of a micropollutant mixture (i.e., caffeine, metformin, atrazine, terbutryn, S-metolachlor and metalaxyl) during lateral stream water flow to adjacent groundwater. We used an integrative approach combining concentrations and transformation products (TPs) of the micropollutants, compound-specific isotope analysis (δ13C and δ15N), sequencing of 16S rRNA gene amplicons and reactive transport modeling. Duplicate laboratory aquifers (160 cm × 80 cm × 7 cm) were fed with stream water and subjected over 140 d to three successive periods of micropollutant exposures as pulse-like (6000 µg L-1) and constant (600 µg L-1) injections under steady-state conditions. Atrazine, terbutryn, S-metolachlor and metalaxyl persisted in both aquifers during all periods (<10 % attenuation). Metformin attenuation (up to 14 %) was only observed from 90 d onwards, suggesting enhanced degradation over time. In contrast, caffeine dissipated during all injection periods (>90 %), agreeing with fast degradation rates (t1/2 < 3 d) in parallel microcosm experiments and detection of TPs (theobromine and xanthine). Significant stable carbon isotope fractionation (Δδ13C ≥ 6.6 ‰) was observed for caffeine in both aquifers, whereas no enrichment in 15N occurred. A concentration dependence of caffeine biotransformation in the aquifers was further suggested by model simulations following Michaelis-Menten kinetics. Changes in bacterial community composition reflected long-term bacterial adaptation to micropollutant exposures. Altogether, the use of an integrative approach can help to understand the interplay of subsurface hydrochemistry, bacterial adaptations and micropollutants biotransformation during stream-groundwater interactions.


Assuntos
Atrazina , Água Subterrânea , Metformina , Poluentes Químicos da Água , Atrazina/análise , RNA Ribossômico 16S , Cafeína/análise , Água Subterrânea/química , Água/análise , Poluentes Químicos da Água/análise
2.
Water Res ; 203: 117530, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388502

RESUMO

Dichloromethane (DCM) is a toxic industrial solvent frequently detected in multi-contaminated aquifers. It can be degraded biotically or abiotically, and under oxic or anoxic conditions. The extent and pathways of DCM degradation in aquifers may thus depend on water table fluctuations and microbial responses to hydrochemical variations. Here, we examined the effect of water table fluctuations on DCM biodegradation in two laboratory aquifers fed with O2-depleted DCM-spiked groundwater from a well-characterized former industrial site. Hydrochemistry, stable isotopes of DCM (δ13C and δ37Cl), and bacterial community composition were examined to determine DCM mass removal and degradation pathways under steady-state (static water table) and transient (fluctuating water table) conditions. DCM mass removal was more pronounced under transient (95%) than under steady-state conditions (42%). C and Cl isotopic fractionation values were larger under steady-state (εbulkC = -23.6 ± 3.2‰, and εbulkCl= -8.7 ± 1.6‰) than under transient conditions (εbulkC = -11.8 ± 2.0‰, and εbulkCl = -3.1 ± 0.6‰). Dual C-Cl isotope analysis suggested the prevalence of distinct anaerobic DCM degradation pathways, with ΛC/Cl values of 1.92 ± 0.30 and 3.58 ± 0.42 under steady-state and transient conditions, respectively. Water table fluctuations caused changes in redox conditions and oxygen levels, resulting in a higher relative abundance of Desulfosporosinus (Peptococcaceae family). Taken together, our results show that water table fluctuations enhanced DCM biodegradation, and correlated with bacterial taxa associated with anaerobic DCM degradation. Our integrative approach allows to evaluate anaerobic DCM degradation under dynamic hydrogeological conditions, and may help improving bioremediation strategies at DCM contaminated sites.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Isótopos de Carbono/análise , Laboratórios , Cloreto de Metileno
3.
Data Brief ; 31: 105708, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32462069

RESUMO

Magnetic Resonance Sounding (MRS) measurements are acquired at 16 stations in the Strengbach headwater catchment (Vosges Mountains - France). These data, rendering the vertical distribution of water contents in the subsurface, are used to show their potential in conditioning a hydrological model of the catchment, as described in the article "Magnetic resonance sounding measurements as posterior information to condition hydrological model parameters: Application to a hard-rock headwater catchment" - Journal of Hydrology (2020). Acquisition protocols follow a free induction decay scheme. Data are filtered by applying a band-pass filter at the Larmor frequency. A filter removing the 50 Hz noise is also applied with the exception of data at a Larmor frequency close to the 50 Hz harmonic. The signal envelopes are then fitted by a decaying exponential function over time to estimate the median characteristic relaxation time of each MRS sounding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA