Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 28(13): 2239-2243, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29859905

RESUMO

Energy generation is a promising area of drug discovery for both bacterial pathogens and parasites. Type II NADH dehydrogenase (NDH-2), a vital respiratory membrane protein, has attracted attention as a target for the development of new antitubercular and antimalarial agents. To date, however, no potent, specific inhibitors have been identified. Here, we performed a site-directed screening technique, tethering-fragment based drug discovery, against wild-type and mutant forms of NDH-2 containing engineered active-site cysteines. Inhibitory fragments displayed IC50 values between 3 and 110 µM against NDH-2 mutants. Possible binding poses were investigated by in silico modelling, providing a basis for optimisation of fragment binding and improved potency against NDH-2.


Assuntos
Proteínas de Bactérias/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Proteínas de Membrana/metabolismo , NADH Desidrogenase/metabolismo , Bacillaceae/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cisteína/química , Cisteína/genética , Inibidores Enzimáticos/química , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana/genética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , NADH Desidrogenase/antagonistas & inibidores , NADH Desidrogenase/química , NADH Desidrogenase/genética , Ligação Proteica
2.
Mol Microbiol ; 91(5): 950-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24444429

RESUMO

Non-proton pumping type II NADH dehydrogenase (NDH-2) plays a central role in the respiratory metabolism of bacteria, and in the mitochondria of fungi, plants and protists. The lack of NDH-2 in mammalian mitochondria and its essentiality in important bacterial pathogens suggests these enzymes may represent a potential new drug target to combat microbial pathogens. Here, we report the first crystal structure of a bacterial NDH-2 enzyme at 2.5 Å resolution from Caldalkalibacillus thermarum. The NDH-2 structure reveals a homodimeric organization that has a unique dimer interface. NDH-2 is localized to the cytoplasmic membrane by two separated C-terminal membrane-anchoring regions that are essential for membrane localization and FAD binding, but not NDH-2 dimerization. Comparison of bacterial NDH-2 with the yeast NADH dehydrogenase (Ndi1) structure revealed non-overlapping binding sites for quinone and NADH in the bacterial enzyme. The bacterial NDH-2 structure establishes a framework for the structure-based design of small-molecule inhibitors.


Assuntos
Bacillus/enzimologia , Metabolismo Energético , Proteínas de Membrana/química , NADH Desidrogenase/química , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/metabolismo , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Modelos Moleculares , NAD/metabolismo , NADH Desidrogenase/isolamento & purificação , NADH Desidrogenase/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Quinonas/metabolismo , Saccharomyces cerevisiae/enzimologia , Eletricidade Estática
3.
Antimicrob Agents Chemother ; 58(3): 1425-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24342648

RESUMO

Resistance of Enterococcus faecalis against antimicrobial peptides, both of host origin and produced by other bacteria of the gut microflora, is likely to be an important factor in the bacterium's success as an intestinal commensal. The aim of this study was to identify proteins with a role in resistance against the model antimicrobial peptide bacitracin. Proteome analysis of bacitracin-treated and untreated cells showed that bacitracin stress induced the expression of cell wall-biosynthetic proteins and caused metabolic rearrangements. Among the proteins with increased production, an ATP-binding cassette (ABC) transporter with similarity to known peptide antibiotic resistance systems was identified and shown to mediate resistance against bacitracin. Expression of the transporter was dependent on a two-component regulatory system and a second ABC transporter, which were identified by genome analysis. Both resistance and the regulatory pathway could be functionally transferred to Bacillus subtilis, proving the function and sufficiency of these components for bacitracin resistance. Our data therefore show that the two ABC transporters and the two-component system form a resistance network against antimicrobial peptides in E. faecalis, where one transporter acts as the sensor that activates the TCS to induce production of the second transporter, which mediates the actual resistance.


Assuntos
Antibacterianos/farmacologia , Bacitracina/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/fisiologia , Farmacorresistência Bacteriana , Enterococcus faecalis/genética , Enterococcus faecalis/fisiologia , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana , Regiões Promotoras Genéticas/genética , Proteoma
4.
Mol Microbiol ; 84(4): 664-81, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22507203

RESUMO

Genes with a role in proline metabolism are strongly expressed when mycobacterial cells are exposed to nutrient starvation and hypoxia. Here we show that proline metabolism in mycobacteria is mediated by the monofunctional enzymes Δ(1) -pyrroline-5-carboxylate dehydrogenase (PruA) and proline dehydrogenase (PruB). Proline metabolism was controlled by a unique membrane-associated DNA-binding protein PruC. Under hypoxia, addition of proline led to higher biomass production than in the absence of proline despite excess carbon and nitrogen. To identify the mechanism responsible for this enhanced growth, microarray analysis of wild-type Mycobacterium smegmatis versus pruC mutant was performed. Expression of the DNA repair machinery and glyoxalases was increased in the pruC mutant. Glyoxalases are proposed to degrade methylglyoxal, a toxic metabolite produced by various bacteria due to an imbalance in intermediary metabolism, suggesting the pruC mutant was under methylglyoxal stress. Consistent with this notion, pruB and pruC mutants were hypersensitive to methylglyoxal. Δ(1) -pyrroline-5-carboxylate is reported to react with methylglyoxal to form non-toxic 2-acetyl-1-pyrroline, thus providing a link between proline metabolism and methylglyoxal detoxification. In support of this mechanism, we show that proline metabolism protects mycobacterial cells from methylglyoxal toxicity and that functional proline dehydrogenase, but not Δ(1) -pyrroline-5-carboxylate dehydrogenase, is essential for this protective effect.


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Prolina Oxidase/metabolismo , Prolina/metabolismo , Anaerobiose , Biomassa , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Modelos Biológicos , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/crescimento & desenvolvimento , Aldeído Pirúvico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA