RESUMO
An insect's phenotype can be influenced by the experiences of the parental generation. However, the effects of the parental symbiotic microbiome and host plant use on the offspring are unclear. We addressed this gap of knowledge by studying Pieris brassicae, a multivoltine butterfly species feeding on different brassicaceous plants across generations. We investigated how disturbance of the parental bacterial community by antibiotic treatment affects F1 larval traits. We tested the effects depending on whether F1 larvae are feeding on the same plant species as their parents or on a different one. The parental treatment alone had no impact on the biomass of F1 larvae feeding on the parental plant species. However, the parental treatment had a detrimental effect on F1 larval biomass when F1 larvae had a different host plant than their parents. This effect was linked to higher larval prophenoloxidase activity and greater downregulation of the major allergen gene (MA), a glucosinolate detoxification gene of P. brassicae Bacterial abundance in untreated adult parents was high, while it was very low in F1 larvae from either parental type, and thus unlikely to directly influence larval traits. Our results suggest that transgenerational effects of the parental microbiome on the offspring's phenotype become evident when the offspring is exposed to a transgenerational host plant shift.IMPORTANCE Resident bacterial communities are almost absent in larvae of butterflies and thus are unlikely to affect their host. In contrast, adult butterflies contain conspicuous amounts of bacteria. While the host plant and immune state of adult parental butterflies are known to affect offspring traits, it has been unclear whether also the parental microbiome imposes direct effects on the offspring. Here, we show that disturbance of the bacterial community in parental butterflies by an antibiotic treatment has a detrimental effect on those offspring larvae feeding on a different host plant than their parents. Hence, the study indicates that disturbance of an insect's parental microbiome by an antibiotic treatment shapes how the offspring individuals can adjust themselves to a novel host plant.
Assuntos
Borboletas/fisiologia , Herbivoria , Microbiota , Animais , Borboletas/crescimento & desenvolvimento , Borboletas/microbiologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/fisiologiaRESUMO
Plants can enhance their defence against herbivorous insects by responding to insect egg depositions preceding larval feeding. The similarity of plant responses to insect eggs with those to phytopathogens gave rise to the hypothesis that egg-associated microbes might act as elicitors. We tested this hypothesis by investigating first if elimination of microbes in the butterfly Pieris brassicae changes the responses of Brassica nigra and Arabidopsis thaliana to eggs and larvae of this insect species. An antibiotic treatment of butterflies mitigated the plant transcriptional response to the eggs and the egg-mediated enhancement of the plant's defence against larvae. However, application of cultivated microbial isolates from the eggs onto Arabidopsis thaliana did not enhance the plant's anti-herbivore defence. Instead, application of an egg-associated glandular secretion, which is attaching the eggs to the leaves, elicited the enhancing effect on the plant's defence against larvae. However, this effect was only achieved when the secretion was applied in similar quantities as released by control butterflies, but not when applied in the reduced quantity as released by antibiotic-treated butterflies. We conclude that glandular secretions rather than egg-associated microbes act in a dose-dependent manner as elicitor of the egg-mediated enhancement of the plant's defence against insect larvae.
Assuntos
Arabidopsis/fisiologia , Borboletas/fisiologia , Mostardeira/fisiologia , Óvulo/microbiologia , Animais , Antibacterianos/farmacologia , Arabidopsis/microbiologia , Glândulas Exócrinas/metabolismo , Feminino , Regulação da Expressão Gênica de Plantas , Larva , Mostardeira/microbiologia , Óvulo/efeitos dos fármacos , Óvulo/fisiologia , Folhas de PlantaRESUMO
Optimal defense (OD) theory predicts that within a plant, tissues are defended in proportion to their fitness value and risk of predation. The fitness value of leaves varies greatly and leaves are protected by jasmonate (JA)-inducible defenses. Flowers are vehicles of Darwinian fitness in flowering plants and are attacked by herbivores and pathogens, but how they are defended is rarely investigated. We used Nicotiana attenuata, an ecological model plant with well-characterized herbivore interactions to characterize defense responses in flowers. Early floral stages constitutively accumulate greater amounts of two well-characterized defensive compounds, the volatile (E)-α-bergamotene and trypsin proteinase inhibitors (TPIs), which are also found in herbivore-induced leaves. Plants rendered deficient in JA biosynthesis or perception by RNA interference had significantly attenuated floral accumulations of defensive compounds known to be regulated by JA in leaves. By RNA-seq, we found a JAZ gene, NaJAZi, specifically expressed in early-stage floral tissues. Gene silencing revealed that NaJAZi functions as a flower-specific jasmonate repressor that regulates JAs, (E)-α-bergamotene, TPIs, and a defensin. Flowers silenced in NaJAZi are more resistant to tobacco budworm attack, a florivore. When the defensin was ectopically expressed in leaves, performance of Manduca sexta larvae, a folivore, decreased. NaJAZi physically interacts with a newly identified NINJA-like protein, but not the canonical NINJA. This NINJA-like recruits the corepressor TOPLESS that contributes to the suppressive function of NaJAZi on floral defenses. This study uncovers the defensive function of JA signaling in flowers, which includes components that tailor JA signaling to provide flower-specific defense.
Assuntos
Ciclopentanos/imunologia , Flores/imunologia , Nicotiana/imunologia , Oxilipinas/imunologia , Proteínas de Plantas/imunologia , Animais , Comportamento Alimentar , Flores/parasitologia , Regulação da Expressão Gênica de Plantas , Manduca/fisiologia , Proteínas de Plantas/genética , Nicotiana/genética , Nicotiana/parasitologiaRESUMO
In the recent years, there has been considerable interest to investigate the adaptive transgenerational plasticity of plants and how a "stress memory" can be transmitted to the following generation. Although, increasing evidence suggests that transgenerational adaptive responses have widespread ecological relevance, the underlying epigenetic processes have rarely been elucidated. On the other hand, model plant species have been deeply investigated in their genome-wide methylation landscape without connecting this to the ecological reality of the plant. What we need is the combination of an ecological understanding which plant species would benefit from transgenerational epigenetic stress-adaption in their natural habitat, combined with a deeper molecular analysis of non-model organisms. Only such interdisciplinary linkage in an ecological epigenetic study could unravel the full potential that epigenetics could play for the transgenerational stress-adaption of plants.
Assuntos
Adaptação Biológica/genética , Epigênese Genética , Fenômenos Fisiológicos Vegetais , Estresse Fisiológico/genética , Evolução Biológica , Metilação de DNA , Ecossistema , Plantas/genéticaRESUMO
Plants maintain microbial associations whose functions remain largely unknown. For the past 15 y, we have planted the annual postfire tobacco Nicotiana attenuata into an experimental field plot in the plant's native habitat, and for the last 8 y the number of plants dying from a sudden wilt disease has increased, leading to crop failure. Inadvertently we had recapitulated the common agricultural dilemma of pathogen buildup associated with continuous cropping for this native plant. Plants suffered sudden tissue collapse and black roots, symptoms similar to a Fusarium-Alternaria disease complex, recently characterized in a nearby native population and developed into an in vitro pathosystem for N. attenuata. With this in vitro disease system, different protection strategies (fungicide and inoculations with native root-associated bacterial and fungal isolates), together with a biochar soil amendment, were tested further in the field. A field trial with more than 900 plants in two field plots revealed that inoculation with a mixture of native bacterial isolates significantly reduced disease incidence and mortality in the infected field plot without influencing growth, herbivore resistance, or 32 defense and signaling metabolites known to mediate resistance against native herbivores. Tests in a subsequent year revealed that a core consortium of five bacteria was essential for disease reduction. This consortium, but not individual members of the root-associated bacteria community which this plant normally recruits during germination from native seed banks, provides enduring resistance against fungal diseases, demonstrating that native plants develop opportunistic mutualisms with prokaryotes that solve context-dependent ecological problems.
Assuntos
Antibiose/fisiologia , Bactérias/crescimento & desenvolvimento , Fungos/fisiologia , Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Alternaria/classificação , Alternaria/genética , Alternaria/fisiologia , Bactérias/classificação , Bactérias/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Fungos/classificação , Fungos/genética , Fusarium/classificação , Fusarium/genética , Fusarium/fisiologia , Interações Hospedeiro-Patógeno , Consórcios Microbianos/fisiologia , Dados de Sequência Molecular , Raízes de Plantas/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose , Nicotiana/crescimento & desenvolvimentoRESUMO
Plants recruit microbial communities from the soil in which they germinate. Our understanding of the recruitment process and the factors affecting it is still limited for most microbial taxa. We analysed several factors potentially affecting root microbiome structure - the importance of geographic location of natural populations, the microbiome of native seeds as putative source of colonization and the effect of a plant's response to UVB exposure on root colonization of highly abundant species. The microbiome of Nicotiana attenuata seeds was determined by a culture-dependent and culture-independent approach, and the root microbiome of natural N. attenuata populations from five different locations was analysed using 454-pyrosequencing. To specifically address the influence of UVB light on root colonization by Deinococcus, a genus abundant and consistently present in N. attenuata roots, transgenic lines impaired in UVB perception (irUVR8) and response (irCHAL) were investigated in a microcosm experiment with/without UVB supplementation using a synthetic bacterial community. The seed microbiome analysis indicated that N. attenuata seeds are sterile. Alpha and beta diversities of native root bacterial communities differed significantly between soil and root, while location had only a significant effect on the fungal but not the bacterial root communities. With UVB supplementation, root colonization of Deinococcus increased in wild type, but decreased in irUVR8 and irCHAL plants compared to nontreated plants. Our results suggest that N. attenuata recruits a core root microbiome exclusively from soil, with fungal root colonization being less selective than bacterial colonization. Root colonization by Deinococcus depends on the plant's response to UVB.
Assuntos
Deinococcus , Microbiota , Nicotiana/microbiologia , Nicotiana/efeitos da radiação , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Plantas Geneticamente Modificadas/efeitos da radiação , Solo , Raios UltravioletaRESUMO
BACKGROUND: Overexpressing novel antimicrobial peptides (AMPs) in plants is a promising approach for crop disease resistance engineering. However, the in planta stability and subcellular localization of each AMP should be validated for the respective plant species, which can be challenging due to the small sizes and extreme pI ranges of AMPs which limits the utility of standard proteomic gel-based methods. Despite recent advances in quantitative shotgun proteomics, its potential for AMP analysis has not been utilized and high throughput methods are still lacking. RESULTS: We created transgenic Nicotiana attenuata plants that independently express 10 different AMPs under a constitutive 35S promoter and compared the extracellular accumulation of each AMP using a universal and versatile protein quantification method. We coupled a rapid apoplastic peptide extraction with label-free protein quantification by nanoUPLC-MSE analysis using Hi3 method and identified/quantified 7 of 10 expressed AMPs in the transgenic plants ranging from 37 to 91 amino acids in length. The quantitative comparison among the transgenic plant lines showed that three particular peptides, belonging to the defensin, knottin and lipid-transfer protein families, attained the highest concentrations of 91 to 254 pmol per g leaf fresh mass, which identified them as best suited for ectopic expression in N. attenuata. The chosen mass spectrometric approach proved to be highly sensitive in the detection of different AMP types and exhibited the high level of analytical reproducibility required for label-free quantitative measurements along with a simple protocol required for the sample preparation. CONCLUSIONS: Heterologous expression of AMPs in plants can result in highly variable and non-predictable peptide amounts and we present a universal quantitative method to confirm peptide stability and extracellular deposition. The method allows for the rapid quantification of apoplastic peptides without cumbersome and time-consuming purification or chromatographic steps and can be easily adapted to other plant species.
Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Técnicas de Química Analítica/métodos , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Nicotiana/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estrutura Quaternária de Proteína , Nicotiana/metabolismoRESUMO
We recently characterized a highly dynamic fungal disease outbreak in native populations of Nicotiana attenuata in the southwestern United States. Here, we explore how phytohormone signalling contributes to the observed disease dynamics. Single inoculation with three native Fusarium and Alternaria fungal pathogens, isolated from diseased plants growing in native populations, resulted in disease symptoms characteristic for each pathogen species. While Alternaria sp.-infected plants displayed fewer symptoms and recovered, Fusarium spp.-infected plants became chlorotic and frequently spontaneously wilted. Jasmonic acid (JA) and salicylic acid (SA) levels were differentially induced after Fusarium or Alternaria infection. Transgenic N. attenuata lines silenced in JA production or JA conjugation to isoleucine (JA-Ile), but not in JA perception, were highly susceptible to infection by F. brachygibbosumâ Utah 4, indicating that products derived from the JA-Ile biosynthetic pathway, but not their perception, is associated with increased Fusarium resistance. Infection assays using ov-nahG plants which were silenced in pathogen-induced SA accumulations revealed that SA may increase N. attenuata's resistance to Fusarium infection but not to Alternaria. Taken together, we propose that the dynamics of fungal disease symptoms among plants in native populations may be explained by a complex interplay of phytohormone responses to attack by multiple pathogens.
Assuntos
Alternaria/fisiologia , Ciclopentanos/metabolismo , Fusarium/fisiologia , Nicotiana/imunologia , Oxilipinas/metabolismo , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Resistência à Doença , Interações Hospedeiro-Patógeno , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Nicotiana/genéticaRESUMO
Question: The large earth bumble bee (Bombus terrestris) maintains a social core gut-microbiota, similar as known from the honey bee, which plays an important role for host health and resistance. Experiments under laboratory conditions with commercial hives are limited to vertically transmitted microbes and neglect influences of environmental factors or external acquisition of microbes. Various environmental and landscape-level factors may have an impact on the gut-microbiota of pollinating insects, with consequences for pollinator health and fitness in agroecosystems. Still, it is not fully clear whether access to different flower diversities will have a significant influence on the bumble bee microbiota. Here, we tested in a semi-field experiment if the bumble bee microbiota changes over time when exposed to different flower diversities within outdoor flight cages. We used commercial hives to distinguish between vertically and horizontally transmitted bacteria, respectively from the nest environment or the exposed outside environment. Result: The sequential sampling of foraging workers over a period of 35 days indicated a temporal progression of the bumble bee microbiota when placed outside. The microbiota increased in diversity and changed in composition and variability over time. We observed a major increase in relative abundance of the families Lactobacillaceae, Bifidobacteriaceae and Weeksellaceae. In contrast, major core-taxa like Snodgrassella and Gilliamella declined in their relative abundance over time. The genus Lactobacillus showed a high diversity and strain specific turnover, so that only specific ASVs showed an increase over time, while others had a more erratic occurrence pattern. Exposure to different flower diversities had no significant influence on the progression of the bumble bee microbiota. Conclusion: The bumble bee microbiota showed a dynamic temporal succession with distinct compositional changes and diversification over time when placed outdoor. The exposure of bumble bees to environmental conditions, or environmental microbes, increases dissimilarity and changes the gut-community composition. This shows the importance of environmental influences on the temporal dynamic and progression of the bumble bee microbiota.
Assuntos
Microbioma Gastrointestinal , Lactobacillales , Microbiota , Urticária , Humanos , Abelhas , Animais , BactériasRESUMO
BACKGROUND: Genetically modified plants are widely used in agriculture and increasingly in ecological research to enable the selective manipulation of plant traits in the field. Despite their broad usage, many aspects of unwanted transgene silencing throughout plant development are still poorly understood. A transgene can be epigenetically silenced by a process called RNA directed DNA methylation (RdDM), which can be seen as a heritable loss of gene expression. The spontaneous nature of transgene silencing has been widely reported, but patterns of acquirement remain still unclear. RESULTS: Transgenic wild tobacco plants (Nicotiana attenuata) expressing heterologous genes coding for antimicrobial peptides displayed an erratic and variable occurrence of transgene silencing. We focused on three independently transformed lines (PNA 1.2, PNA 10.1 and ICE 4.4) as they rapidly lost the expression of the resistance marker and down-regulated transgene expression by more than 200 fold after only one plant generation. Bisulfite sequencing indicated hypermethylation within the 35S and NOS promoters of these lines. To shed light on the progress of methylation establishment, we successively sampled leaf tissues from different stages during plant development and found a rapid increase in 35S promoter methylation during vegetative growth (up to 77% absolute increase within 45 days of growth). The levels of de novo methylation were inherited by the offspring without any visible discontinuation. A secondary callus regeneration step could interfere with the establishment of gene silencing and we found successfully restored transgene expression in the offspring of several regenerants. CONCLUSIONS: The unpredictability of the gene silencing process requires a thorough selection and early detection of unstable plant lines. De novo methylation of the transgenes was acquired solely during vegetative development and did not require a generational change for its establishment or enhancement. A secondary callus regeneration step provides a convenient way to rescue transgene expression without causing undesirable morphological effects, which is essential for experiments that use transformed plants in the analysis of ecologically important traits.
Assuntos
Metilação de DNA , Inativação Gênica , Nicotiana/crescimento & desenvolvimento , Regiões Promotoras Genéticas , DNA Bacteriano/genética , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Marcadores Genéticos , Fenótipo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Nicotiana/genética , TransgenesRESUMO
The gut microbiota of animals displays a high degree of plasticity with respect to environmental or dietary adaptations and is shaped by factors like social interactions, diet diversity or the local environment. But the contribution of these drivers varies across host taxa and our ability to explain microbiome variability within wild populations remains limited. Terrestrial animals have divergent mobility ranges and can either crawl, walk or fly, from a couple of centimeters toward thousands of kilometers. Animal movement has been little regarded in host microbiota frameworks, though it can directly influence major drivers of the host microbiota: (1) Aggregation movement can enhance social transmissions, (2) foraging movement can extend range of diet diversity, and (3) dispersal movement determines the local environment of a host. Here, I would like to outline how movement behaviors of different host taxa matter for microbial acquisition across mammals, birds as well as insects. Host movement can have contrasting effects and either reduce or enlarge spatial scale. Increased dispersal movement could dissolve local effects of sampling location, while aggregation could enhance inter-host transmissions and uniformity among social groups. Host movement can also extend the boundaries of microbial dispersal limitations and connect habitat patches across plant-pollinator networks, while the microbiota of wild populations could converge toward a uniform pattern when mobility is interrupted in captivity or laboratory settings. Hence, the implementation of host movement would be a valuable addition to the metacommunity concept, to comprehend microbial dispersal within and across trophic levels.
RESUMO
Plant-microbe associations are thought to be beneficial for plant growth and resistance against biotic or abiotic stresses, but for natural ecosystems, the ecological analysis of microbiome function remains in its infancy. We used transformed wild tobacco plants (Nicotiana attenuata) which constitutively express an antimicrobial peptide (Mc-AMP1) of the common ice plant, to establish an ecological tool for plant-microbe studies in the field. Transgenic plants showed in planta activity against plant-beneficial bacteria and were phenotyped within the plants´ natural habitat regarding growth, fitness and the resistance against herbivores. Multiple field experiments, conducted over 3 years, indicated no differences compared to isogenic controls. Pyrosequencing analysis of the root-associated microbial communities showed no major alterations but marginal effects at the genus level. Experimental infiltrations revealed a high heterogeneity in peptide tolerance among native isolates and suggests that the diversity of natural microbial communities can be a major obstacle for microbiome manipulations in nature.
Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Nicotiana/imunologia , Nicotiana/microbiologia , Peptídeos Catiônicos Antimicrobianos/genética , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/metabolismoRESUMO
The wild tobacco species Nicotiana attenuata has been intensively used as a model plant to study its interaction with insect herbivores and pollinators in nature, however very little is known about its native pathogen community. We describe a fungal disease outbreak in a native N. attenuata population comprising 873 plants growing in an area of about 1500 m2. The population was divided into 14 subpopulations and disease symptom development in the subpopulations was monitored for 16 days, revealing a waxing and waning of visible disease symptoms with some diseased plants recovering fully. Native fungal N. attenuata pathogens were isolated from diseased plants, characterized genetically, chemotaxonomically and morphologically, revealing several isolates of the ascomycete genera Fusarium and Alternaria, that differed in the type and strength of the disease symptoms they caused in bioassays on either detached leaves or intact soil-grown plants. These isolates and the bioassays will empower the study of N. attenuata-pathogen interactions in a realistic ecological context.
Assuntos
Fungos/isolamento & purificação , Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Alternaria/genética , Alternaria/isolamento & purificação , Bioensaio/métodos , Surtos de Doenças , Fungos/genética , Fusarium/genética , Fusarium/isolamento & purificação , Proteínas de Plantas/metabolismo , SoloRESUMO
Plants stably transformed to manipulate the expression of genes mediating ecological performance have profoundly altered research in plant ecology. Agrobacterium-mediated transformation remains the most effective method of creating plants harbouring a limited number of transgene integrations of low complexity. For ecological/physiological research, the following requirements must be met: (i) the regenerated plants should have the same ploidy level as the corresponding wild-type plant and (ii) contain a single transgene copy in a homozygous state; (iii) the T-DNA must be completely inserted without vector backbone sequence and all its elements functional; and (iv) the integration should not change the phenotype of the plant by interrupting chromosomal genes or by mutations occurring during the regeneration procedure. The screening process to obtain transformed plants that meet the above criteria is costly and time-consuming, and an optimized screening procedure is presented. We developed a flow chart that optimizes the screening process to efficiently select transformed plants for ecological research. It consists of segregational analyses, which select transgenic T1 and T2 generation plants with single T-DNA copies that are homozygous. Indispensable molecular genetic tests (flow cytometry, diagnostic PCRs and Southern blotting) are performed at the earliest and most effective times in the screening process. qPCR to quantify changes in transcript accumulation to confirm gene silencing or overexpression is the last step in the selection process. Because we routinely transform the wild tobacco, Nicotiana attenuata, with constructs that silence or ectopically overexpress ecologically relevant genes, the proposed protocol is supported by examples from this system.