Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 615(7954): 817-822, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746190

RESUMO

Quantum computation features known examples of hardware acceleration for certain problems, but is challenging to realize because of its susceptibility to small errors from noise or imperfect control. The principles of fault tolerance may enable computational acceleration with imperfect hardware, but they place strict requirements on the character and correlation of errors1. For many qubit technologies2-21, some challenges to achieving fault tolerance can be traced to correlated errors arising from the need to control qubits by injecting microwave energy matching qubit resonances. Here we demonstrate an alternative approach to quantum computation that uses energy-degenerate encoded qubit states controlled by nearest-neighbour contact interactions that partially swap the spin states of electrons with those of their neighbours. Calibrated sequences of such partial swaps, implemented using only voltage pulses, allow universal quantum control while bypassing microwave-associated correlated error sources1,22-28. We use an array of six 28Si/SiGe quantum dots, built using a platform that is capable of extending in two dimensions following processes used in conventional microelectronics29. We quantify the operational fidelity of universal control of two encoded qubits using interleaved randomized benchmarking30, finding a fidelity of 96.3% ± 0.7% for encoded controlled NOT operations and 99.3% ± 0.5% for encoded SWAP. The quantum coherence offered by enriched silicon5-9,16,18,20,22,27,29,31-37, the all-electrical and low-crosstalk-control of partial swap operations1,22-28 and the configurable insensitivity of our encoding to certain error sources28,33,34,38 all combine to offer a strong pathway towards scalable fault tolerance and computational advantage.

2.
Nano Lett ; 13(5): 2264-9, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23597062

RESUMO

The long lifetime of lanthanide emitters can present a challenge for conventional pump-based modulation schemes, where the maximum switching speed is limited by the decay time of the excited state. However, spontaneous emission can also be controlled through the local optical environment. Here, we demonstrate a direct modulation scheme enabled by dynamic control of the local density of optical states (LDOS). Specifically, we exploit the LDOS differences between electric and magnetic dipole transitions near a metal mirror and demonstrate that rapid nanometer-scale mirror displacements can modulate the emission spectra of trivalent europium ions within their excited state lifetime. The dynamic LDOS modulation presented here can be readily extended to faster optical modulation schemes and applied to other long-lived emitters to control the direction, polarization, and spectrum of spontaneous emission at sublifetime scales.

3.
Nat Nanotechnol ; 14(8): 747-750, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31308497

RESUMO

Quantum computation requires qubits that satisfy often-conflicting criteria, which include long-lasting coherence and scalable control1. One approach to creating a suitable qubit is to operate in an encoded subspace of several physical qubits. Although such encoded qubits may be particularly susceptible to leakage out of their computational subspace, they can be insensitive to certain noise processes2,3 and can also allow logical control with a single type of entangling interaction4 while maintaining favourable features of the underlying physical system. Here we demonstrate high-fidelity operation of an exchange-only qubit encoded in a subsystem of three coupled electron spins5 confined in gated, isotopically enhanced silicon quantum dots6. This encoding requires neither high-frequency electric nor magnetic fields for control, and instead relies exclusively on the exchange interaction4,5, which is highly local and can be modulated with a large on-off ratio using only fast voltage pulses. It is also compatible with very low and gradient-free magnetic field environments, which simplifies integration with superconducting materials. We developed and employed a modified blind randomized benchmarking protocol that determines both computational and leakage errors7,8, and found that unitary operations have an average total error of 0.35%, with half of that, 0.17%, coming from leakage driven by interactions with substrate nuclear spins. The combination of this proven performance with complete control via gate voltages makes the exchange-only qubit especially attractive for use in many-qubit systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA