Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 10(5): e1004336, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24784729

RESUMO

Secondary metabolites are produced by numerous organisms and can either be beneficial, benign, or harmful to humans. Genes involved in the synthesis and transport of these secondary metabolites are frequently found in gene clusters, which are often coordinately regulated, being almost exclusively dependent on transcription factors that are located within the clusters themselves. Gliotoxin, which is produced by a variety of Aspergillus species, Trichoderma species, and Penicillium species, exhibits immunosuppressive properties and has therefore been the subject of research for many laboratories. There have been a few proteins shown to regulate the gliotoxin cluster, most notably GliZ, a Zn2Cys6 binuclear finger transcription factor that lies within the cluster, and LaeA, a putative methyltransferase that globally regulates secondary metabolism clusters within numerous fungal species. Using a high-copy inducer screen in A. fumigatus, our lab has identified a novel C2H2 transcription factor, which plays an important role in regulating the gliotoxin biosynthetic cluster. This transcription factor, named GipA, induces gliotoxin production when present in extra copies. Furthermore, loss of gipA reduces gliotoxin production significantly. Through protein binding microarray and mutagenesis, we have identified a DNA binding site recognized by GipA that is in extremely close proximity to a potential GliZ DNA binding site in the 5' untranslated region of gliA, which encodes an efflux pump within the gliotoxin cluster. Not surprisingly, GliZ and GipA appear to work in an interdependent fashion to positively control gliA expression.


Assuntos
Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/fisiologia , Regiões 5' não Traduzidas , Sítios de Ligação , Proteínas Fúngicas/genética , Dosagem de Genes , Regiões Promotoras Genéticas
2.
J Biol Chem ; 287(22): 18863-71, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22496454

RESUMO

Archaeal promoters consist of a TATA box and a purine-rich adjacent upstream sequence (transcription factor B (TFB)-responsive element (BRE)), which are bound by the transcription factors TATA box-binding protein (TBP) and TFB. Currently, only a few activators of archaeal transcription have been experimentally characterized. The best studied activator, Ptr2, mediates activation by recruitment of TBP. Here, we present a detailed biochemical analysis of an archaeal transcriptional activator, PF1088, which was identified in Pyrococcus furiosus by a bioinformatic approach. Operon predictions suggested that an upstream gene, pf1089, is polycistronically transcribed with pf1088. We demonstrate that PF1088 stimulates in vitro transcription by up to 7-fold when the pf1089 promoter is used as a template. By DNase I and hydroxyl radical footprinting experiments, we show that the binding site of PF1088 is located directly upstream of the BRE of pf1089. Mutational analysis indicated that activation requires the presence of the binding site for PF1088. Furthermore, we show that activation of transcription by PF1088 is dependent upon the presence of an imperfect BRE and is abolished when the pf1089 BRE is replaced with a BRE from a strong archaeal promoter. Gel shift experiments showed that TFB recruitment to the pf1089 operon is stimulated by PF1088, and TFB seems to stabilize PF1088 operator binding even in the absence of TBP. Taken together, these results represent the first biochemical evidence for a transcriptional activator working as a TFB recruitment factor in Archaea, for which the designation TFB-RF1 is suggested.


Assuntos
Archaea/genética , Fatores de Transcrição/genética , Transcrição Gênica , Sequência de Bases , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética
3.
Nucleic Acids Res ; 31(13): 3518-24, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12824357

RESUMO

Analysis of multiple sequence alignments can generate important, testable hypotheses about the phylogenetic history and cellular function of genomic sequences. We describe the MultiPipMaker server, which aligns multiple, long genomic DNA sequences quickly and with good sensitivity (available at http://bio.cse.psu.edu/ since May 2001). Alignments are computed between a contiguous reference sequence and one or more secondary sequences, which can be finished or draft sequence. The outputs include a stacked set of percent identity plots, called a MultiPip, comparing the reference sequence with subsequent sequences, and a nucleotide-level multiple alignment. New tools are provided to search MultiPipMaker output for conserved matches to a user-specified pattern and for conserved matches to position weight matrices that describe transcription factor binding sites (singly and in clusters). We illustrate the use of MultiPipMaker to identify candidate regulatory regions in WNT2 and then demonstrate by transfection assays that they are functional. Analysis of the alignments also confirms the phylogenetic inference that horses are more closely related to cats than to cows.


Assuntos
Genômica/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software , Algoritmos , Animais , Sítios de Ligação , Gatos , Cavalos/classificação , Cavalos/genética , Internet , Filogenia , Proteínas Proto-Oncogênicas/genética , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Proteína Wnt2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA